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ABSTRACT

The objective of this research was to develop

unified constitutive equation which can model a variety

of nonlinear material phenomena observed in Rene _ 80

between 538°C and 982°C.

Five unified constitutive models were reviewed in

detail to evaluate their capabilities and limitations.

Two models, a generic back stress drag stress model and

the Bodner mode], were then used to model the behavior

of Rene" 80 at 982°C. Both models were found to have

some advantageous features, however, neither proved

adequate for Rene" 80.

A new constitutive model was proposed based on

back stress and drag stress. The tensorial back stress

was used to model directional effects; whereas, the

scalar drag stress was used to model isotropic effects

and cyclic hardening or softening. A flow equation and

evolution equations for the state variables were

developed in multiaxial form. Procedures were

developed to generate the material parameters. The

model predicted very well the monotonic tensile,

cyclic, creep and stress relaxation behavior of Rene"

80 at 982°C.

The model was then extended to 871°C, 760°C, and

538°C. It was shown that strain rate dependent
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behavior at high temperatures, and strain rate

independent behavior at the lower temperatures could be

predicted very well. A large number of monotonic

tensile, creep, stress relaxation and cyclic

experiments were predicted.

The multiaxial capabilities of the model were verified

extensively for combined tension/torsion experiments.

The prediction of the model agreed very well for

proportional, nonproportional and pure shear cyclic

loading conditions at g82°C and 871°C. It was shown

that the proposed back stress model predicts a phase

angle between the inelastic strain rate and deviatoric

stress vectors. Some possible extensions of the model

in future research were identified.
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CHAPTER 1

INTRODUCTION

During the past fifteen years there have been

significant advances in improving the fuel efficiency

of gas turbine engines. An improvement in performance

is usually associated with an increase in the operating

temperatures of the engine components and/or a

reduction in their weight. Development of high

temperature superalloy materials has indeed been a

major factor in accomplishing the conflicting goals of

higher thrust and lower weight for engines.

One of the major tasks before turbine design

engineers is the assurance of the structural durability

of the various components designed. This is a

challenging problem, especially in the case of

components operating in a severe environment and

complex loading conditions. For example, critical jet

engine components such as turbine disks, blades and

vanes are subjected to very high cyclic stresses and

temperatures, which vary throughout the flight mission.

Structural integrity and durability of these components

must, however, be ensured. Analytical methods are

extensively used in this process of life analysis of

the engine components. Experimental verification using



component testing, which is very expensive, is

performed for critical locations. To determine the

life of a component, three types of analyses must be

performed: (1) Structural analysis, (2) Thermal

analysis and (3) Damage analysis. While all three are

important, the primary focus in this report is on

structural analysis methods.

There have been significant advances in the past

in the areas of stress and thermal analysis techniques.

Modern computers have dramatically improved our ability

to perform stress analyses for complicated geometries.

The Finite Element Method is the prime example. These

methods have a high degree of accuracy if the stresses

and temperatures are such that inelastic strains are

negligibly small. However, they have not been as

successful in analysing high temperature material

behavior involving significant inelastic strains. The

main reason for this is the deficiency in the

mechanical constitutive equations that are used to

model the material behavior. At high temperatures

materials display a number of response characteristics,

some of which are not observed at lower temperatures.

Typical examples are strain rate dependence, creep,

anelasticity, and cyclic hardening or softening. The

classical plasticity and creep models that are



incorporated in most of the finite element codes used

today are inadequate to model high temperature response

of materials {1,2].

Development of more realistic constitutive models

for high temperature superalloys has become necessary.

Since the constitutive models are being evaluated for

use in the gas turbine industry, several specific

properties have been established that are necessary for

high temperature superalloys. These models must: (1)

have the ability to accurately predict the monotonic

and cyclic response including strain and cyclic

hardening or softening under multiaxial loading

conditions; (2) be applicable over the temperature

range occurring in gas turbines; (3) be practical for

use in nonlinear finite element computer codes; and (4)

be easily relatable to observed material response to

determine the required material parameters.

Classical attempts at constitutive modeling are

based on separating the strain into separate components

to model the creep and plasticity. This approach,

although computationally desirable, does not usually

include an adequate method to model the coupling

between creep and plasticity. More recently, several

nunified" constitutive formulations have been proposed

based on a single inelastic strain component to model

3



both creep and plasticity [14,17,19,24,25]. The models

have shown encouraging results in modeling constitutive

behavior at high temperatures. Some areas of

difficulty have also become apparent [15,26].

In view of the many advantages, a research program

has been carried out to investigate the existing models

and develop a new unified constitutive equation. The

research was primarily directed toward modeling the

response of Rene" 80 from 500°C to 1100°C. Support for

the project was provided by NASA Lewis Research Center,

Cleveland, Ohio. It is anticipated that the results

will be incorporated into a finite element code,

although this is not part of the present study. The

work was directed toward three specific goals.

The first was to study the typical response of

unified constitutive models. This work included a

review of the literature, programming five models and

evaluating their response using material data published

in the literature. The two models that appeared most

promising for high temperature superalloys were

selected for further study. The material constants for

each model were determined for Rene" 80 at 982°C and

the calculated response

experimental data. An

followed this exercise.

was compared to the

evaluation of the models
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Secondly, a new unified constitutive model was

developed using the above results. The model

development was influenced by the observed deformation

mechanisms present in Rene" 80 between 500°C and

1100:C. The model is fully three dimensional, but the

development was based on uniaxial response.

Experimental and calculated results were compared for

monotonic, creep and cyclic load histories at 538°C,

760°C, 871°C, and 982°C.

The third goal was the extension of the model to

multiaxial loading histories. Even though the model is

three dimensional, the multiaxial hardening aspects had

to be considered. The response capabilities for

proportional and nonproportional loading paths were

compared to observed response.



CHAPTER2

TYPICAL RESPONSE OF UNIFIED CONSTITUTIVE MODELS

Unified constitutive theories of material behavior

have been under development for more than ten years.

Although significant progress has been achieved, they

have not yet ful|y developed to the extent that they

can be used by design engineers. Several different

unified models are available in the literature, and

modifications are still in progress. In the mean time,

classical theories of plasticity and creep are being

widely used in inelastic analyses. In order to

understand the special capabilities of the unified

constitutive models and their advantages and

disadvantages, it is helpful to review briefly the

structure of the classical theories of plasticity and

creep. The general structure of unified constitutive

theories will be discussed next, noting the

similarities and differences with the classical

approach. This will be followed by a detailed

investigation of the capabilities and limitations of a

few of the unified constitutive models that have been

used for high temperature superalloys.
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2.1 Classical Theories of Plasticit_ and Creep

In the classical approach, the total strain (Eij)

is considered to be decomposed into an elastic strain

(¢ije), a plastic strain (eijP), a creep strain (cijC),

and a thermal strain (cijT); that is,

= c''e + ci P + _i C + ci T (2 1)¢ij 13 j j j "

The elastic strain is reversible upon removal of the

applied load. For small strain it is described by

Hooke's Law,

e_(_.X) oi . _ Ok 6iel j- j k j'
(2.2)

where E is the elastic modulus and y is the Poisson

ratio. Implied summation of the indices is always used

in this report. The thermal strain arises due to

thermal expansion of the material, cijT = _AT 6ij,

where AT is the temperature difference from a

coefficient. The plastic strain,

recovered upon removal of the load.

reference temperature and _ is the thermal expansion

P cannot be
¢ij '

In the classical

P is
theory of plasticity, the plastic strain ¢ij

dependent on the history of loading but is considered

time independent. Time dependency is introduced using

the creep strain cij c, which also accounts for the

stress relaxation and strain recovery properties of the

material.

7



2.1.1 Mathematical Theories of Classical Plasticity

The classical theory of plasticity is fundament-

ally based upon the concept of a yield surface in the

stress space. It is assumed that a yield function

exists which delineates the elastic and plastic regime

of material behavior. The yield function depends on

the state of stress, temperature and previous stress

history. For example, plastic strain is typically

defined to occur if

f(oij) _ g(T,K) (2.3)

where g is a scalar function of temperature and strain

hardening, the latter characterized by the parameter K.

The yield surface f(oij) is generally written as a

function of the second invariant of the deviatoric

stress tensor, J2, since yield and plastic flow are

independent of hydrostatic stress [3,4]. Two of the

most widely used criteria were proposed by Von Mises,

f(oij ) = J2,and Tresca, f = 01 - 03, where 01 and 03

are the maximum and minimum principal stresses.

In addition to the yield surface the classical

approach also requires the use of a plastic flow law.

Some of the early work in plasticity theory was for the

ideally plastic materials and for elastic perfectly

plastic materials. However, most metals show consider-

8



able amount of work hardening. The concept of work

hardening can be mathematically stated using the fol-

lowing inequalities proposed by Drucker, [5,6,7]:

(a) doij d¢ij > 0 upon loading (2.4)

(b) daij deijP _ 0 for a cycle of loading (2.5)

and unloading.

The first inequality requires the total work to be

positive during the application of a stress increment,

and the second states that the net plastic work

performed over a stress application and removal cycle

is positive or zero.

Two important results arise from these

inequalities. First, Drucker showed that the initial

yield surface and all subsequent yield surfaces must be

convex. The second is that for a smooth yield surface

the plastic strain increment vector must be normal to

the yield surface; i.e.,

P_ af

dcij-d_ _ai-_ (2.6)

where the scalar function X may depend on stress, tem-

perature and the loading history.

Equation (2.6) is the Flow Rule, which relates the

increment of plastic strain to an increment of stress.

If the Von Mises yield function, f(aij) = J2, is used



in Equation (2.6), the Prandtl Reuss flow law results,

P = d_ S (2 7)
d¢ij ij"

Equation (2.6) enables the calculation of the plastic

strain increments at any particular point during the

loading history for any yield function f(aij). How-

ever, it is still necessary to describe the work hard-

ening.

A major part of the current mathematical theories

of plasticity is the development of hardening rules.

These rules describe how work hardening during plastic

deformation affects subsequent yield surfaces and flow

characteristics. The question of what is an

appropriate hardening rule for many materials has never

been answered completely. However, the isotropic and

kinematic hardening rules have evolved as important

contributions.

The isotropic hardening rule is based on the

assumption that, during plastic deformation, the yield

surface maintains its shape but the size increases.

Usually the increase in size is controlled by a single

scalar parameter that depends on the accumulated

plastic strain or accumulated plastic work. Isotropic

hardening is not always a good assumption since some

materials develop anisotropic and Bauschinger effects

that significantly change the size, shape and origin of

the yield surface.
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Kinematic hardening is based on the concept that

during plastic deformation the yield surface does not

change its size or shape, but translates in the stress

space. Various versions of this rule have been pro-

posed to describe how this translation occurs. Prager

{8,9] proposed that the translation occurs in the

direction of the normal to the yield surface. Ziegler

[10] modified this rule for use with a yield surface

with corners where the normal is not defined. Mroz

[11] bounded the translation, size and shape with a

limit surface.

In general, kinematic hardening or a combination

of kinematic and isotropic hardening is a better

assumption than the isotropic hardening alone in

representing material behavior. However, in addition

to expansion and translation, in multiaxial loading the

yield surface may distort during plastic deformation

[12,13]. Additional hardening may be present in the

case of nonproportional loading histories. These

enormously complicate the yield surface based plasti-

city theories.

2.1.2 Classical Approach to Creep

The creep strain, cijC, in Equation 2.1 has tradi-

tionally been calculated in a manner similar to the

11



plastic strain {55]. The creep strain at any time t is

based on an empirical relation in the form

Cc = f(°c,t,T). (2.8)

The creep test results are usually uniaxial and at

constant stress oc and temperature T. In variable

loading time hardening or strain hardening assumptions

are frequently used. Time hardening is based on the

assumption that creep rate depends on the time at a

stress and temperature and independent of the current

stress and thermal rates; i.e.,

af ;c+ af. af
_C = T6"_C _a_" + "_E - _'E. (2.9)

The creep rate is defined to depend on strain rather

than time in the strain hardening rule. Solving

Equation 2.8 for time and combining with Equation 2.9

gives

=g(O T ¢) (2 10)
C C' ' " *

The total strain is estimated by integrating Equation

2.9 or 2.10 with stress and temperature as functions of

time. This can only be a reasonable approximation for

some very limited cases, yet it is used widely. A flow

law similar to the Prandtl Reuss equation is assumed

for multiaxial loading. The development is based on

12



purely phenomenological arguments and is similar to

plasticity.

2.2 Unified State Variable Constitutive Theories

Recall that classical plasticity theory is rate

independent and time dependence is introduced through

empirically developed creep models. The two terms,

creep and plasticity, are independent and there is no

influence of plasticity on creep or creep on

plasticity. Yet these effects are present in material

response. It is very important that constitutive models

have coupling between the creep and plasticity terms.

This has proven extremely difficult using separate

creep and plastic strain components. Thus, in the

unified theories, the classical separation of strain

into a time independent plastic strain and a time

dependent creep strain is replaced by a total inelastic

strain. In many recent theories the inelastic strain is

assumed to occur even at stresses below the yield

stress, is rate dependent and generally does not employ

a yield surface. The total strain is written as the sum

of a reversible elastic strain ¢ij e, a nonreversible

inelastic strain ¢ij I and a thermal strain ¢ijT; i.e.,

¢ij = ¢ij e + cijl + ¢ij T (2.11)

13



A number of unified state variable constitutive

models are available in the literature which have been

developed for specific materials or classes of

materials {14,15]. None of these models appear to have

been fully developed to the extent that they can

represent all aspects of material behavior; yet, there

appears to be a significant improvement over the

classical theory. There are also varying degrees of

difficulty involved in the numerical implementation of

these models. It appears helpful in the development of

a new model to review these models individually and

evaluate their capabilities and limitations in terms of

accuracy of modeling material behavior, material

parameter evaluation and numerical implementation. The

specific material behaviors evaluated are strain rate

sensitivity, creep, stress relaxation, cyclic hardening

or softening and anelasticity. These properties are

important in high temperature superalloys.

2.3 Response Characteristics of Some Unified Models

2.3.1 Walker Model

The viscoplasticity effects are modeled using two

types of internal variables, an equilibrium stress,

14



and a drag stress, K {14,16}. The equilibrium
_ij'
stress (back stress) is used to model kinematic

hardening and Bauschinger effects in cyclic loading.

The drag stress K models isotropic hardening and cyclic

hardening or softening effects• The Walker model can

be summarized as follows:

¢ij= X

where X= J_[_Sij-_ij][_Sij-_ij]

(2.12)

_ij:(nl+n2) _ij o ")+¢_j T-(_ij'_ij j

(2.13)

-n7R (2.14)
K=K1-K2 e

m-1

• "n5R 2 T
G=(n3+n4 e )_+n6(_J_ij_ij ) (2.15)

Iz.1 .i (2.16)
=j_cijcij

is an effective inelastic strain rate. n i (i=1,7),

K i (i=1,2) and m are material parameters. The drag

stress is a function of the accumulated inelastic

strain and the back stress evolution equation has both

static and dynamic recovery terms. A summary of the

15



equations in the uniaxial form and the constants for

the Hastelloy-X are given in Appendix A.

In order to study the basic capabilities of this

model, a computer program was developed for integrating

equations (2.12-2.16). The material parameters were

taken from Reference [14] for Hastelloy-X at 649°C. A

number of uniaxial loading histories were imposed to

study the strain rate sensitivity, creep, stress relax-

ation, and cyclic effects of the model. On monotonic

loading the model showed sensitivity to the applied

strain rate. Such strain rate sensitivity is a basic

property of all the unified models. Another basic

capability is creep and stress relaxation modeling.

This stress relaxation was verified as shown in Figure

2.1. The response is similar to that seen in stress

relaxation tests. Another major capability required of

any model is the cyclic history dependence. A number

of cycles were imposed at a constant strain rate but

with increasing amplitude such that the stresses are

elastic during the initial cycles, see Figure 2.2. The

predicted hysteresis loops shown in Figure 2.3 are in

qualitative agreement with normally observed material

behavior. Notice that a model based on back stress has

the capability of predicting the cyclic history

dependence very well. The back stress response is also

cyclic during the cyclic history of loading as shown in

16
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Figure 2.4. The back stress is not near saturation;

the flat portions in the response are during elastic

loading and unloading where the inelastic strain rates

are close to zero.

The material parameters from Reference [14] used

in the previous calculations implied that the drag

stress K remained constant since nT=O in Equation 2.14.

To model cyclic hardening or softening behavior the

drag stress K must be a variable. The cyclic softening

modeling capability was qualitatively verified by using

arbitrary values for K2 and n7 in Equation 2.14. It

was possible to simulate cyclic softening by decreasing

the drag stress as shown in Figure 2.5.

One of the major advantages of a back stress model

is its capability to model anelastic recovery. It has

been observed in materials at high temperature that,

when a specimen is loaded into the inelastic regime and

unloaded, there is a time dependent recovery of the

residual inelastic strain [1]. Since the inelastic

strain rate depends on the difference of the applied

stress and back stress, Equation 2.12, anelastic

strains can be modeled whenever this difference is

negative. The constants K2 and n7 in Equation (2.14)

were changed to verify the anelastic recovery of the

Walker model. Figures 2.6 and 2.7 contain the results

of this exercise where the strain is held at a low

18
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Figure 2.6
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value of stress on the unloading branch. Time depen-

dent recovery of the stress is observed in Figure 2.7.

2.3.2 Robinson Model

A unified constitutive model based on back stress

and drag stress has been proposed by Robinson [17,18].

This model is different from the other models since

different flow and evolution equations are used for

loading and unloading. In this sense it bears close

resemblance to classical plasticity in that it can also

be derived from a plasticity potential. The model is

considered as a unified theory since no distinction is

made between creep and plastic strains. The model is

summarized in the following equations and inequalities:

FnI:ij ; F>O and S _ .>0 (2 17)
ijij

0 ; F_O or SijZij_O (2.18)

12ph_ I r_ij • G>G o and Sij_ij>O (2.19)
ij" _ '

z

_ij L2p_ ¢I _ij G£Go Sijij-r ; or _ij_O (2.20)

where

J2

F = {--_-- 1), _i_J =
K

(Sij - _ij), G = ,
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Iz = ½Tijzij, J2 : ½_ijmij, h _ H ho = H

G B ' G0B '

r = RG m-B and ro = RGo-B.m

The material parameters are p, B, n, m, R, H and Go .

The Robinson model has a back stress _ij to model

kinematic hardening characteristics. The isotropic

variable K plays the role of a threshold stress below

which the inelastic strain rate is zero. Isotropic

hardening or softening can be modeled by varying K.

Most of the applications appear to have been made with

a constant value for K.

The Robinson model was programmed to explore its

capabilities using the material parameters for 2_ Cr -1

Mo steel at 538°C from Reference [18]. The model showed

monotonic strain rate sensitivity, Figure 2.8, and

appears to have some interesting creep response

characteristics. Some materials display a delay in the

creep response when stress is suddenly lowered during

secondary creep as shown in Figure 2.9. It is seen

that the Robinson model predicts creep at a lower rate

after a brief delay which depends on the amount of

stress drop, Figure 2.10. The response of the back

stress, shown in Figure 2.11, gradually saturates to

different limits.
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The cyclic capability of the Robinson model was

investigated by imposing constant strain rate strain

histories with variable amplitude similar to that shown

in Figure 2.2. The hysteresis response was similar to

that shown in Figure 2.3.

In fully reversed cycling, the model tended to

saturate after the first cycle as shown in Figure 2.12.

This is perhaps due to an inadequate model for the drag

stress, K. The model shows a fading memory of prior

stress relaxation for large strain ranges. A

comparison with and without a one minute tensile strain

hold is shown in Figures 2.13 and 2.14. The tensile

strain hold results in significant stress relaxation.

However, after the first cycle, the effect of the

stress relaxation appears to have been lost on the

compression side of the loop. It was also noted that a

one minute compressive strain hold also gave the same

result at the end of the first cycle. These response

characteristics are probably not realistic material

behavior.

2.3.3 Bodner Model

Bodner and coworkers [19,20] have developed a

unified theory which has a single scalar internal
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variable. These equations are fairly simple and have

been used for Rene _ 95, INIO0, and IN718. The flow

equation is similar to Prandtl Reuss flow law,

.I _
¢ij-_Sij

where

DP
_2 2

and

(2.21)

J2=_SijSij, (2.22)

P 2 r n+llZ 2 _nl

D2=D°exp L- J" (2.23)

The evolution equation for Z is given by

• .I Z-Z 2
Z=m( ZI-Z )W -AZ I (--Z_--)r (2.24 )

L

where Z1 is the maximum value of Z and Z2 is the

minimum recoverable value of Z. The internal variable

Z has been interpreted as being a macroscopic

representation of the resistance to inelastic flow.

The evolution of Z depends on the inelastic work rate,

_I, rather than Jell as in the other models• In the

absence of thermal recovery, A=O, Equation 2.24 can be

integrated as
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I

Z:ZI+(Zo-Z1)e-mW (2.25)

where W I is the past accumulated inelastic work. Thus,

in tensile tests the state variable Z is a

monotonically increasing function of W I and is used to

model strain hardening.

This model is particularly simple and has only a

few material parameters. Procedures have been

established to systematically evaluate these parameters

from test data [21]. Material parameters for Rene" 95

at 6490c from Reference {20] were used to verify the

strain rate sensitivity and creep response of this

model. These are shown in Figures 2.15 and 2.16.

The Bodner model described above is for isotropic

material response. It has been extended for

anisotropic materials |22,23]. Bodner has recently

modified the original model to incorporate a form of

directional hardening. This will be discussed in more

detail in Chapter 4.

2.3.4 Miller Model

A unified constitutive model based on a drag

stress and rest stress (back stress) has been developed

by Miller {24] for uniaxial loading. It has been
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observed for a number of materials that the steady

state creep rate correlates with the applied stress in

the form of the hyperbolic sine; i.e.,

_ss=CB' {Sinh(Ao ss)}n (2.26)

where B' is a temperature dependent coefficient.

Miller used this result to obtain a flow equation and

static thermal recovery functions. Miller's model can

be written for multiaxial loading in the following form

[14 ]:

i II Inl;sSi nh _ X , (2 .27)cIj=BB'i X 3 i_

where X:/ 213Sij-iiij][_Sij-ilij ]

•I " (2 28)
k_ij=Hlcij-HiBE) Sinh(Alm) n m ,

A,.]I(-H21([C2+_- _-_iK - ,[ ']H2C2Be Sinh(A2K ) n (2.29)

where a=/_Ili j klij (2.30)

e =exp for T_>.6T m (2.31)
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for T<.6T m (2.32)

is an effective inelastic strain rate, defined

previously.

A unique feature of this model is that only the

material parameters e* and K o (the initial value of K)

are dependent on temperature. This could simplify the

material parameter requirements for the model. The

back stress equation contains only static thermal

recovery terms; whereas, the drag stress equation has

both static and dynamic recovery terms. The functional

form for both the static recovery terms is similar to

that used in the flow law.

This model has been exercised to evaluate various

capabilities. It was found that numerical integration

of the equations is far more difficult than for any

other models considered in this study. The model

requires very small time steps even fo simple loading

cases. The numerical difficulties arise due to the

highly nonlinear functional forms and the state

variables tend to saturate very quickly. The

calculated response of monotonic loading at different

strain rates, shown in Figures 2.17-2.19, has trilinear

behavior {14]. It is seen in Figures 2.18 and 2.19

that the state variables change from elastic to
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inelastic and to the saturated condition very rapidly

in very distinct regions. The stress relaxation

behavior predicted by this model is shown in Figure

2.20. The cyclic capabilities could not be fully

evaluated. In general, it was possible to calculate

the response for only one cycle due to the enormous

number of time steps required. The hysteresis loops

predicted by the model also showed a trilinear behavior

similar to that in Figure 2.17. All the evaluations

were done using material parameters for Hastelloy-X at

649°C from Reference {14].

2.3.5 Krieg, Swearengen and Rohde Model

This model also contains back stress and drag

stress and has a power law type of flow equation. The

back stress is identified with the effects of

dislocation pileups at obstacles and the drag stress is

Theconsidered as a mechanical strength variable.

equations for this model are written as follows [25]:

(2.33)

{:S-a (2.34)
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K2[expI 21 and
• n

RAR KI[4 ]exp UR_)-

(2.35)

(2.36)

The model has only static recovery terms. The

monotonic and creep behavior of the model have been

discussed in detail for aluminum {25]. The model has

not been extended to cyclic hardening or softening.

The constants for aluminum reported in Reference {25]

assume the drag stress to be constant.

This model was exercised for monotonic, creep and

cyclic loading conditions. Two examples of response

are shown in Figures 2.21 and 2.22. It can be seen

that the state variables approach saturation rather

abruptly, similar to the Miller model. This could be

due to the value of the constants or perhaps the lack

of dynamic recovery terms and the use of exponential

form in static recovery. The model could not predict

any anelastic recovery with the constants reported for

aluminum.

2.4 Summary, of Model Evaluation

The detailed evaluations performed on the five

models discussed before were based on material
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constants for different materials and temperatures.

They do not necessarily reflect the behavior of Rene _

80, the material being investigated here. However,

they have led to an understanding of the response

characteristics of unified models in general. Some

potential areas of difficulties in numerical

implementation and material parameter evaluations for

the models have also become apparent. These are

briefly discussed below.

2.4.1 Strain Rate Sensitivity

All the models exhibited strain rate dependent

tensile behavior. This is a basic requirement for

models that are to represent high temperature material

behavior. At low temperatures most materials do not

show strain rate sensitivity. The capability of the

unified models at low temperatures was not evaluated.

The characteristic behavior of the internal variables

is usually different for the various models. In the

Walker, Robinson, and Bodner models, the state vari-

ables saturated to the same limit at high strain rates;

whereas, for the Miller and Krieg models, the

saturation values for the state variables are strain

rate dependent.
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2.4.2 Creep and Stress Relaxation

All the models examined appear to have the basic

ability to predict primary and secondary creep. They

also exhibit stress relaxation during a constant strain

history. The basic feature of the models which provides

these capabilities is the hardening recovery term in

the evolution equations. Some models had both static

and dynamic recovery terms. None of the unified models

can predict tertiary creep. The Robinson model appears

to have the ability to predict transients due to a

stress drop during steady state creep. This is a

desirable feature for practical applications.

2.4.3 Cyclic Behavior

Almost all the unified models available to date

were developed based on monotonic and creep behavior;

however, almost all the structural applications involve

cyclic loads. It is extremely important that the

models should adequately model cyclic behavior. The

models examined had varying degrees of cyclic hardening

or softening capabilities. Although the structure of

the equations would permit modeling cyclic hardening or

softening, none of the models appear to have been fully
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developed in this regard. It appears that models based

on a kinematic back stress and an isotropic drag stress

can model cyclic behavior more realistically. In

general, cyclic hardening or softening behavior is

modeled using the variations of the drag stress.

2.4.4 Anelasticity

Anelastic recovery cannot be predicted by the

classical Prandtl Reuss flow law. The Bodner model,

which is an extension of this type of flow law, suffers

the same drawback. The structure of the models based

on back stress and drag stress enables the modeling of

anelastic recovery. This capability was verified by

using hypothetical material parameters in the Walker

model.

2.4.5 Numerical Implementation

The computer programs used to make the evaluations

employed a simple forward Euler integration scheme.

This worked well for all the models. However, the time

step size requirements for the Miller model were

particularly small. Higher order integration schemes

with automatic time incrementing would be beneficial
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for this model. Even so, the Miller model appears

least desirable from a numerical standpoint. This is

due to the highly nonlinear functions used in the

evolution equations. The Robinson model also has less

desirable properties due to the inequalities. The

functions used in the constitutive model change

discontinuously across these inequalities. The Bodner

model presented no major problems, although it required

the use of small time steps. The Walker model also

presented no major difficulties. In general, the back

stress drag stress models require more storage.

2.4.6 Material Parameters

the

This perhaps is the biggest area of difficulty for

unified theories. The evaluation of material

parameters varied significantly among the various

models. There does not appear to be a general

procedure to evaluate these parameters. The only

exception is the Bodner model which has only one state

variable. It is desirable to have a method of finding

these constants from standard test data. Most of the

models have been verified at only one temperature;

thus, the temperature dependency of the material

parameters is not clear.
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CHAPTER3

REVIEW OF THE EXPERIMENTAL PROGRAM

The main objective of the research program is the

development and verification of constitutive equations

for modeling high temperature material behavior. One

of the most important requirements for accomplishing

this objective is the establishment of an accurate data

base for the material behavior under investigation.

This data base must include a wide spectrum of loading

histories and temperatures. In the past many

constitutive equations have been formulated from a

limited data base. The temperature range is limited

and there is almost no multiaxial data at elevated

temperatures. Differences in the chemistry, heat

treatment and experimental techniques can cause

considerable inconsistencies in the observed behavior.

Recognizing this severe problem the National

Aeronautics and Space Administration, Lewis Research

Center, Cleveland, has sponsored a program which

includes the development of a uniaxial and multiaxial

data base for the two superalloys, Rene" 80 [26] and

B1900 [27] at several temperatures.

Rene" 80 was experimentally evaluated by Van Stone

[26,30] as part of a NASA contract to
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General Electric Company, Aircraft Engine Business

Group, Cincinnati, Ohio. This study was conducted in

conjunction with the current research on constitutive

modeling and is reported separately. However, the

relevant aspects of the experimental study are included

in this report because of their impact on the current

research.

3.1 Description of the Program

The experimental program has several distinct

objectives. These include the generation of mechanical

response data that are relevant to gas turbine

applications. The temperature, strain range and strain

rates were selected to satisfy this need. The specimen

designs used in the tests also conformed to this

requirement. The program was designed to maximize the

amount of data obtained from each test. Advantage is

also taken of the recent developments in testing

technology. Finally, computerized data reduction

methods were developed which are specifically suited

for constitutive equation development.

Three types of tests were performed; uniaxial,

multiaxial (tension/torsion) and uniaxial tests on

notched specimens. The uniaxial and multiaxial tests

are for the development and verification of the
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constitutive equations and are included the study. The

structural verification study using the notch

specimens will be reported separately {30]. The

uniaxial tests were performed by Dr. R. H. Van Stone at

General Electric Company, Evendale, Ohio. The

tension/torsion tests were performed by Dr. R.

Williams at General Electric Company, Schenectady, New

York. The two categories of tests include model

development and model verification. The results of the

model development tests are used to generate the

material parameters for the constitutive model. The

results of the model verification tests are used for

comparing the observed material behavior with that

predicted by the constitutive model.

3.2 Material and Specimen

Rene" 80 was chosen for investigation in this

program. It is a nickel based superalloy that is

widely used for high temperature components such as

blades and vanes in gas turbine engines. The strength

of this alloy is derived from gamma prime precipitates,

Ni3(AI,Ti), and the solid solution of molybdenum and

tungsten in the matrix gamma phase. The chemical

composition of the material used in this program and

nominal Rene" 80 composition is given in Table 3.1.
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Cylindrical specimen blanks were investment cast

from remelt stock of Rene" 80 in two sizes. The

smaller blanks (1.3 cm diameter x 10 cm) were used for

tensile, creep and cyclic test specimens. The larger

blanks (3.0 cm diameter x 15 cm) were used for

tension/torsion testing. Both castings had

approximately the same grain size (_ 0.6 cm). These

specimen blanks were given the standard heat treatment

for Rene" 80, shown in Table 3.2.

Specimens were later machined from these blanks.

Figure 3.1 shows the thin wall tubular test specimens

used for uniaxial experiments. A wall thickness of

about .08 cm was chosen because it is typical of most

blades and vanes used in engines. It has been reported |28]

that there is a thin wall effect on at least some of the

mechanical properties of Rene" 80. The grain size of Rene"

80 used in this study is much larger than the test

specimen wall thickness. Although this may increase

the risk of data scatter, thin wall specimens were

specifically chosen to represent actual gas turbine

components. Figure 3.2 shows the cylindrical hollow

specimen used for the tension/torsion tests.
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Table 3.1 Composition of Rene" 80

Element

C

Mn
Si

S

P

Cr
Ti

B
Al

W

Mg
W+Mo

Co

Zr

Fe

Cb

Ta

V

Cu

Hf

Mg
Ni

Specification

0.15-0.14

O. 10 Max.

O. 10 Max.

0.0075 Max.

0.015 Max.

13.70-14.30

4.80-5.0

0.01-0.12

2.8-3.2

3.70-4.30

3.70-4.30

7.70 Min.

9.00-10.00

0.02-0.10

O. 03 Max.

O. 10 Max.

O. 10 Max.

O. 10 Max.

O. 10 Max.

0.10 Max.

O. 10 Max.

Balance

Certified Analysis

0.17

0.01

0.02

0.002

0.009

14.06

4.87

0.015

3.05

4.00

4.06

8.06

9.55

0.03

0.07

0.01

0.02

0.01

0.01

0.01

0.0032

Balance
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Table 3.2 Heat Treatment of Rene _ 80

(i)

(ii)

(iii)

(iv)

1204°C (2200°F)/2 hours; cool to 1093°C

(2000°F) within 10 minutes; cool to room

temperature.

1093oc (2000°F)/4 hours; cool to 649°C

(1200°F) within 6 minutes; cool to room

temperature.

1052°C (19250F)/8 hours; cool to 649°C

(1200°F) within 30 minutes, cool to room

temperature.

843oc (1550°F)/16 hours; cool to room

temperature.
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3.3 Description of the Uniaxial Testing Program

Three types of uniaxial tests were performed.

They are monotonic tensile, constant load creep and

cyclic tests. All tests were done on closed loop

servocontrolled machines. The monotonic tensile tests

were performed under strain rate control to obtain

strain rate sensitivity data. Creep tests were

performed under stress control conditions at different

stress levels. The cyclic tests were also strain

controlled and were performed at different strain

rates, hold times and Ac ratios ( A c = alternating

strain/mean strain). Variations were made in Ac to

study the effect of mean stress, which has been shown

to have significant influence on low cycle fatigue life

[29]. All the cyclic tests and tensile tests were

performed under strain rate control. The cyclic tests

were done in blocks of approximately twenty cycles with

each block having a different strain amplitude. The

same block strain range history (.0030, .0060, .0090,

.0060, .0030, .0090, .0030) was used on all the

uniaxial cyclic tests. The first three blocks had

increasing strain amplitude and next two blocks had

decreasing strain amplitude. The last two blocks had a

sharply increasing and decreasing strain amplitudes to
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study possible transient effects. An example of the

imposed strain history is shown in Figure 3.3.

Complete hysteresis loops were recorded at each point

shown in this figure.

All of the above tests were performed at three

primary temperatures of 982°C (1800°F), 871°C (1600 °F)

and 760°C (1400°F). A limited number of monotonic

tensile and creep tests were also performed at I093°C

(2000OF), 649oc (1200°F) and 538°C (1000°F). The test

matrix and specimen allocation for all uniaxial tests

are shown in Table 3.3.

Most nickel base superalloys have a general change

in response characteristics in the temperature range

considered in this study. At the higher temperatures

significant time and rate effects are observed. At the

lower temperatures the rate sensitivity is essentially

absent, but creep and relaxation response is present.

The transition occurs at about 750°C to 800°C. At this

temperature the ductility is minimal as shown in Figure

3.4. This type of behavior is expected to complicate

both the testing and modeling.

3.3.1 Tests at g82°C (1800°F)

The monotonic tensile tests were performed at

strain rates of .002 per minute, .02 per minute, .06
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per minute, and .2 per minute. One additional

monotonic tensile curve was obtained from a scheduled

cyclic test which accidentally failed due to initial

overload. The specimens were extended to strain values

of .016 to ensure saturation. At the end of each test

the strain was held constant to obtain stress

relaxation data. In general, terminal strains larger

than .016 resulted in specimen failure.

The creep tests were performed at 300 MPa, 217

MPa, and 110 MPa. These tests were done under load

control with an elastic strain rate of approximately

.02 per minute. These tests were stopped after an

inelastic strain accumulation of about .01 or after 150

hours.

It is observed 11] that, under typical aircraft

engine operating conditions, a negative mean strain

exists in turbine airfoils at higher temperatures.

The A¢=-1 tests at g82°C have negative mean strains.

Two tests were performed with 12 second and 120 second

hold times, at compressive peak strain. This is

frequently encountered in airfoils at high temperature.

3.3.2 Tests at 871°C (1600°F)

In general the ductility is lower at this

temperature. Thus, the monotonic tensile tests could
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not be run to the high values of strain required for

saturation. Three monotonic tensile tests were

performed at strain rates of .2 M-l, .02 M-1 and .002

M-1. Three creep tests were performed at stress levels

of 493 MPa, 413 MPa and 313 MPa. The cyclic test

conditions were exactly the same as those at

g82°C (1800OF).

3.3.3 Tests at 760°C (1400°F)

Most of these tests are the same as the tests at

871°C (1600°F). Creep tests were done at higher stress

values to obtain measurable creep. Four additional

cyclic tests included two with a tensile mean strain

and two with tensile hold time. Since the ductility is

very low at this temperature, the strain levels in the

monotonic tests were expected to be low.

3.3.4 Tests at Other Temperatures

A limited number of tests were performed at other

temperatures. Three monotonic tensile tests were

performed at 538°C (IO00OF) at strain rates of .2 M -1,

.02 M -1 and .002 M -1. One strain rate controlled (.02

M -1) monotonic tensile test was performed at 649°C

(1200°F). A creep test at 114 MPa was performed at
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1093°C (2000°F).

temperatures.

No cyclic tests were done at these

3.3.5 Results of the Uniaxial Experimental Program

The amount of data acquired during the

experimental program is enormous and presentation of

all the data for each test is not practical. Only

typical examples are shown to discuss specific material

phenomena. Additional data are presented in later

chapters in comparison to predicted response.

The monotonic tests revealed the strain rate

sensitivity of Rene" 80 as a function of temperature.

At g82°C (1800°F) there is a very large sensitivity to

the applied strain rate, as shown in Figure 3.5;

whereas, at 538°C (IO00°F) there is no strain rate

sensitivity, as shown in Figure 3.6. At 871°C (16000F)

there is some strain rate sensitivity but very

little at 7600C (1400°F). The lack of monotonic strain

rate sensitivity in the tensile tests at 760°C does not

imply the absence of time dependent effects. As shown

in Figure 3.7 there is a significant amount of creep.

Similarly, there is a significant amount of stress

relaxation at temperatures above 760°C. An example of

stress relaxation is shown in Figure 3.8 for a 12

second compressive peak strain hold at g82°C (1800°F).
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Rene" 80 is generally cyclically stable at all

temperatures except at the higher temperatures (982°C

and 871°C) and higher strain rates, where some

softening is observed for the first few cycles. Thus,

cyclic softening behavior is a function of both

temperature and strain rate. The cyclic stress strain

behavior is compared with the monotonic stress strain

curve in Figures 3.9, 3.10, and 3.11. The cyclic

response is presented as half of the total stress and

strain range for a number of cycles from the block

history. At 982°C (1800°F), there is a considerable

amount of cyclic softening at a strain rate of .2 per

minute as shown in Figure 3.9. However, at the lowest

strain rate of .002 per minute there is no softening

(see Figure 3.10). Figure 3.11 shows the material is

essentially cyclically stable at 760°C (1400°F). This

result is not conclusive since the tensile test results

are not ordered with respect to the strain rate. This

scatter is probably associated with the lack of

ductility at 760°C. The mean strain tests (A_ = -1.0)

showed that there is a considerable amount of mean

stress relaxation. An example is shown in Figure 3.12

for the first few cycles of mean strain test at 982°C

(1800°F). This figure also shows the development of

cyclic inelastic strain.
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3.4 Multiaxial Experiments

In structural components the state of stress and

strain may not be uniaxial. Usually a complex three

dimensional stress and strain state exists. In the

past experimental investigations of three dimensional

stress and strain states have been possible for elastic

loading using photoelasticity techniques. Even in

these studies the cyclic loading conditions which are

of primary importance are not possible.

Room temperature biaxial tests have been conducted

for a number of years in the experimental investigation

of yield surfaces [13]. These usually involve a thin

tubular specimen which is loaded simultaneously in

tension and torsion or in tension and internal

pressurization. Biaxial testing under cyclic loading

conditions with independent control of the strain or

load in each of the two directions has become possible

only recently. Advances in extensometry and computer

control have been responsible for sophisticated biaxial

tests at high temperatures. These biaxial tests are

usually in a tension/torsion mode.

The tension/torsion tests described below were

performed by Dr. R. Williams at the Turbine Technology

Laboratories of General Electric Company in Schenectady

[30]. The axial/torsion extensometer used to measure
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and control

simultaneously

Corporation.

the tensile and shear strains

was developed by the Instron

The strain measurements were made using

high temperature capacitive displacement gauges. The

details of the extensometer are are given in References

[26] and [30].

Multiaxial tests were performed at 982°C (1800°F)

and 871°C (1600°F). Seven tests were performed at

each temperature. Table 3.4 and Figure 3.13 give the

details of the torsion and multiaxial tests. At each

temperature two torsional cyclic tests were performed to

determine the strain rate sensitivity. Strain rates of

.002 per minute and .02 per minute were used. Two

simple in phase axial/torsion tests were performed with

Exx=C.Yxy for C being constant as shown in Figure

3.13a. Another in phase test was done with a 120

second hold at a peak strain point (see Table 3.4).

In analyzing multiaxial behavior, out of phase

loading conditions are important. In an effort to

harden the material in all possible planes, two types

of out of phase tests were performed. These are shown

in Figures 3.13b and 3.13c. In Figure 3.13b each block

of cycles, such as A-A, is proportional. However, the

sequence produces out of phase hardening effects since

the maximum shear planes are different for each block.

The out of phase test condition shown in Figure 3.13c
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Table 3.4 Multiaxial Test Matrix

(For Temperatures of 982oc and 871oc)

Type of Test

Torsion

Tension/Torsion

Tension/Torsion

Tension/Torsion

Phase Relationship

In Phase

(single)

(M -1 ) Figure

.02,.002

.02,.002 13a

In Phase Variable** 13b

(multiple)

900 Out of Phase .002 13c

Tension/Torsion
120 second hold*

In Phase .02 13a

* The hold time is at maximum strain for the 871oc

test and at minimum strain for the 982oc test.

** A constant cycle time of 360 seconds for all the

cyclic blocks.
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is continuous. The loading condition changes linearly

from pure tension at point A to pure shear at point B.

The peak strain values at points A and B were chosen

such that the octahedral shear strains are the same at

these two points. All the multiaxial tests except the

multiple proportionality test (see Figure 3.13b) were

performed in sequences of cyclic blocks with different

strain ranges, similar to the uniaxial experiments.

3.4.1 Results of the Multiaxial Testing Program

Some examples of the experimental results from the

torsional and multiaxial tests are given in Figures

3.14 to 3.16. Figure 3.14 shows six hysteresis loops

(at the end of each block) from a torsion test at g82oC

(1800°F). Three strain ranges of .0024, .0048, and

.0072 were used and a strain rate of .002 M -1 was

maintained. The hysteresis loops coincide exactly for

each strain range. This indicates the absence of any

cyclic softening or hardening. It is also seen that

the hysteresis loops are not symmetrical. The bias in

the negative direction remains the same for all loops;

therefore, it appears to depend on the initial loading.

The bias was present in all pure torsion and in the in
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phase tension torsion tests. Figure 3.16 is a typical

example.

Only cyclic tests were performed in the torsion

mode. Figure 3.15 compares the torsion test results

from a number of hysteresis loops. The results are

shown as half of the range quantities from the lower

tip of the hysteresis loops. The coincidence of this

result from various cycles confirms the lack of any

cyclic softening or hardening. Recall that the same

result was observed for the uniaxial tests at this

strain rate (Figure 3.10). The lack of cyclic

hardening or softening impies that the torsional cycle

stress strain curve shown in Figure 3.15 can be

considered as representing the initial torsional load up

curve. The monotonic tensile loading response at the

same temperature and strain rate is also shown in

Figure 3.15 for comparison.

The cyclic hysteresis loops from the first and

last block of a multiple in phase tension torsion test

are compared in Figure 3.16. They are again coincident

indicating the lack of any history effects due to

changes in the proportionality factor during testing.
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3.5 Data Processing

It is desirable to have stress, strain and time

data at each instant during an entire test for the

development of the constitutive parameters. This will

aid in the modeling of both transient and steady state

behavior. In uniaxial tensile tests the load-

displacement curve was recorded on an X-Y plotter.

This curve was later digitized to obtain approximately

100 data points. Since these tests were done at

constant strain rate, time was calculated at each

point. A similar procedure was used for the initial

loading of creep tests. The displacement during creep

was also continuously recorded on a strip chart. This

displacement versus time plot for the entire test was

later digitized.

An automated data acquisition system manufactured

by Engineering Technical Services of Champaign,

Illinois, was used for recording the cyclic test data.

This system sampled and stored data at various points

during a cycle. Voltage information related to load,

displacement and time was stored in a buffer which was

later transferred to tapes. Approximately 200 data

points were taken for each cycle. Data was taken for

the first three cycles at the beginning of each block



and subsequently for every other cycle. Loops were

also recorded periodically on conventional X-Y

plotters. These helped to verify the accuracy of the

automated data acquisition system.

The load and displacement data were first

converted to stresses and strains using the engineering

definitions for these quantities. The elastic modulus

for each test specimen was determined using the initial

part of a stress strain curve. A significant variation

in the values for the modulus was observed {26]. The

inelastic strain was determined using the calculated

modulus for each specimen.

The unified constitutive models usually predict

the inelastic strain rate. To determine stress or

inelastic strain rate from the test data, the stresses

and inelastic strains were numerically differentiated

with respect to time at each data point. A second

order seven point sliding polynomial proved adequate

for this purpose. Accumulated inelastic strain and

inelastic work was also calculated. All the data for

each specimen was stored on a computer file in a matrix

of stress, strain, time, inelastic strain, stress rate,

strain rate, inelastic strain rate, accumulated

inelastic strain, accumulated inelastic work and cycle

number. These computer files were later used for
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generating the material

constitutive models.

parameters related to the
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CHAPTER4

PREDICTION OF RENE " 80 RESPONSE USING UNIFIED MODELS

The response characteristics of some unified

constitutive models were presented in Chapter 2 for a

variety of loading conditions. This exercise

demonstrated the general capabilities and limitations

of the unified models. The study was essentially

qualitative in nature due to the lack of a common

experimental data base and appropriate material

parameters. The materials and temperatures studied

were Rene _ 95 and Hastelloy-X at 649°C, 2_ CrMo Steel

at 538°C and Aluminum at 43°C. It is desirable to

reevaluate the ability of the unified models to analyze

the response behavior of Rene" 80 described in the

previous chapter.

One outcome of the initial study is that the

models could be categorized into two general types.

The first type, typical of the Walker, Robinson, Krieg

et.al, and Miller models, had a tensorial back stress

and a scalar drag stress. The second type, like the

Bodner model, has a single scalar state variable which

is used to model the rate dependent strain hardening

effects. In this chapter the merits of the two types

of models are evaluated for their ability to predict
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Rene" 80 response. This will require the evaluation of

the material parameters for the models. A long

standing difficulty in the application of unified

constitutive models is the development of the material

constants. This difficulty is alleviated to a certain

extent by: (1) proposing a general procedure of

material parameter evaluation that is applicable to

most of the unified theories; and (2) evaluating

parameters for a generic back stress drag stress model,

rather than the four individual models, that contains

the essential properties of this type of model.

4.1 Generic Back Stress Dra 9 Stress Model

The various back stress drag stress models have

different functional forms in their flow and evolution

equations. There are also differences in the dynamic

and static recovery terms. It appears that the

functional forms in the different models were selected

for modeling a specific material or class of materials.

However, there are striking similarities in the general

structure of the flow and evolution equations in the

various back stress drag stress models. This has also

been observed by Walker [14] and Lindholm [271. The

essential structure of the constitutive models can be

characterized for uniaxial loading as:

75



_I=F (o,_,Z,T)
(4.1)

(4.2)

2=g_ I_ I I-g_Z I_ I {-Rz
(4.3)

where _(0)=0 and Z(O)=Z o are the initial conditions.

Equation 4.1 is the flow equation and Equations 4.2 and

4.3 are the evolution equations for the back stress, _,

and the drag stress, Z, respectively. The first term

in Equations 4.2 and 4.3 is for modeling hardening and

the second term is for dynamic recovery of the state

variables. The third term is a static thermal recovery

term which is operative in long time predictions.

There does not appear to be any consistency in the

structure of the static thermal recovery terms R_ and

R2. Further, the drag stress is frequently held

constant, Z=O, in many applications.

In order to keep the study of back stress drag

stress approach as general as possible, it is proposed

to retain the general framework of Equations 4.2 and

4.3. No specific functional forms for fl, gl, etc.

will be assumed a priori. Experimental data will be

examined in the framework of Equations 4.1, 4.2 and 4.3
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and a choice of functional forms will be made on this

basis. Such a model will be referred to as a "generic

drag stress model" in the followingback stress

sections.

Stouffer and Bodner [21] have demonstrated a

technique of obtaining a state variable history during

any particular test by inverting the flow equation.

Many of the back stress drag stress models proposed

have a power law type of flow equation that is

invertible. Thus, let us assume

(4.4)

Equations 4.2, 4.3, and 4.4 constitute the generic back

stress drag stress model.

4.2 Determination of the Material Parameters

The long time static thermal recovery terms R_ and

R= in Equations 4.2 and 4.3 can be neglected for short

duration tests such as monotonic tensile tests at high

strain rates. When static thermal recovery effects are

neglected the uniaxial scalar equation for the drag

stress becomes

77



Lt=(g'-g _'z) I _I I-

This equation can be integrated to give

-g2rc I

Z=Z l+(Z o-Z 1)e

(4.5)

(4.6)

where _¢ I is the accumulated inelastic strain from the

beginning of the test and Zo and Z 1 are the initial and

final values, respectively, of the drag stress . In

most of the back stress drag stress models, the drag

stress controlled the cyclic hardening or softening

behavior, as described in Chapter 2. The stable

condition is reached after cyclic hardening or

softening when Z=O. Then Equation 4.5 reduces to the

saturated value of the drag stress Zl=gl/g 2. The

initial condition is Z(O)=Z o and g2 represents the rate

of cyclic hardening or softening. The parameters Zo,

Zl, and g2 are assumed to be material constants at a

particular temperature.

The accumulated inelastic strain is small for

uniaxial tensile tests in comparison with the value

from cyclic tests. Thus, the drag stress is almost

constant and equal to the initial value in these tests.

Further at about 2% strain the stress strain curves

become flat; thus, at saturation _=Z=_=O and _I=_. If

oo and no are the saturated values of the applied
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stress and back stress respectively, Equation 4.4 for

the tensile saturated condition becomes

•I ( ao- _o _n
T o , (4.7)

If a number of monotonic tensile tests are performed to

saturation at various constant strain rates the values

of no, Zo and n can be determined. Equation 4.7

becomes

In_I=n In(ao-no)-n InZo+ InD (4.8)

which can be used in a nonlinear regression analysis to

minimize the error between the left and right hand

sides.

To determine

monotonic tensile

inverted to give

1

a=o-Z{_I} n .

the back stress history for the

tests, the flow equation was

(4.9)

Since Z=Z o and the stress, a, and inelastic strain

rate, _I, are known at each point during the test the

back stress, _, can be calculated throughout a test.

This ability to determine the history of the state
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variables during a test is the real advantage of the

method. Once the back stress, _, is known during the

test it is possible to estimate the back stress rate at

each point in the history. The data (stress, strain,

time) were collected at a large number of time points

during all the tests. This made numerical

differentiation of the back stress (or any other

quantity) possible using a seven point sliding function

technique. It was found that the function _=At b gave

the best estimate. The constants A and b were

reevaluated at each time point. There is, however, one

inherent difficulty. The inelastic strains and

inelastic strain rates cannot be measured with

confidence during the initial loading phase of the

history. Thus, the back stress, _, and its rate, _,

are known only from the yield point. A typical example

of the calculated response for the back stress, _, and

back stress rate, _, are shown in Figures 4.1 and 4.2.

Notice that _ becomes very small near saturation.

Knowing the behavior of _ and _ during tensile

tests makes it possible to evaluate the material

parameters in Equation 4.2. Neglecting the static

recovery, R1, Equation 4.2 can be written as follows:

_TTI=f, - fzIl. (4.10)
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Since _, _I and _ are known a plot of (_/_I) versus the

back stress (_) can be constructed as shown in Figure

4.3. The data from the four monotonic tensile tests,

varying in strain rate from .2 M-1 to .002 M-1, tend to

cluster around a straight line. Thus, fl and f2 in

Equation 4.10 can be treated as being material

constants at 982% and can be determined.

At this point in the development the material

parameters related to the flow equation (4.4) and the

back stress evolution equation (4.2) have been

determined. Recall that the calculation of the back

stress, _, in a tensile test required the assumption

that the drag stress is constant. This assumption can

now be relaxed. The back stress, _, can be calculated

by integrating Equation 4.2 with known values of fl and

f2- Equation 4.4 is inverted to obtain

Z= J-_. (4.11)

I II n

Using Equation 4.11 the value of Z is calculated

during a test using the measured values for stress, o,

and inelastic strain rate, _I, and the integrated value

for the back stress, _. The constants Z1 and g2 in the

drag stress equation (4.6) can be evaluated using
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nonlinear regression of the data from monotonic and

cyclic tests.

It is now possible to return to Equation 4.9 and

calculate new values for the back stress, _, using the

calculated variation of Z during a test. The process

can be repeated until stable values are achieved. This

procedure is shown in Figure 4.4 for the entire process

of constant evaluation. The material parameters were

evaluated using the computer code implementing the

scheme described above. Five iterations were usually

adequate. The scheme was applied separately for two

tensile and two cyclic tests at strain rates of .2M -1

and .O02M -1 as shown in Table 4.1.

4.3 The Generic Back Stress Dra 9 Stress Model Results

The generic back stress drag stress model was used

to calculate the tensile response for each test using

the constants for that test as shown in Figure 4.5.

Excellent agreement was obtained since the constants

were determined separately for each test. These

results verify that the constant evaluation procedure

works very well. Cyclic calculations were made for the

same strain rates using the constants from the

monotonic .2 M -1 and .002 M -1 tests, respectively. The

results are compared in Figure 4.6. The test results
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TABLE 4.1

MATERIAL CONSTANTS FOR RENE" 80, 982°C

(a) Generic Back

Based on

Monotonic Tests

Constant .2M-1 .002M-1

Do(s'l) 1.59 1.59

n 2.44 2.44

fl(MPa)xl04 5.6 7.75

f2 140.2 234.5

Zo(MPa) 955 2860

ZI(MPa) 344 350

g2 93.2 212.3

Stress Drag Stress Model

Based on Based on

C_c]ic Tests A]] Tests

.2M-1 .002M-1 .2M-1&.OO2M-1

1.59 1.59 1.5g

2.44 2.44 2.44

19.8 4.1 6.02

845.6 242.8 173.0

189 2287 1064

189 2287 107

0 0 44.4

(b) Bodner Model

Zo=8613MPa M=.6154 MPa -1 n=.2853

Z1=15141MPa A=.6793 s-1 Do=104 s-1

Z2=12058MPa r=3.563
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shown are at cyclic saturation; whereas, the

calculations are for the first few cycles and the

saturated cycle. The model displays cyclic softening

behavior as in the tests. The qualitative properties

of the model appear good, although the inelastic

strains are considerably under predicted for the low

rate test.

It is necessary to further investigate the cyclic

capability of the generic back stress drag stress

model. This was done using the same approach but with

the constants based on the cyclic test data. The

calculated results for each test at strain rates of

.002 M -1 and .2 M -1 were excellent. The test data and

calculations are shown in Figure 4.7 for Z=Zl=Constant

since the results shown are for cyclic saturation.

This further verified the cyclic capability of the

model and the material constant evaluation procedure.

The previous calculations were limited in scope.

Each strain rate and loading condition was treated

separately. However, a constitutive model should apply

for any kind of loading conditions and strain rates at

each fixed particular temperature. Thus, it should be

applicable for all the strain rate tests. The

parameters for the generic back stress drag stress

model were determined using the five monotonic tensile

tests at g82°C. The material parameters, evaluated
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from these tests, were used to calculate the response

for the tensile tests. Although the model was good for

a particular strain rate (Figure 4.5), it is not good

for the entire set of strain rates as shown in Figure

4.8. This is an inadequacy in the model. Notice in

Table 4.1 that the material parameters related to the

drag stress are significantly different among the

various cases analyzed.

In summary, the generic back stress drag stress

model appears to have the right tendencies for the

cyclic behavior modeling. However, it has poor

tendencies for modeling strain rate sensitivity in the

monotonic tensile response.

4.4 Evaluation of the Bodner Model

The Bodner model was selected for study mainly

based on its simplicity. It has only one state

variable and fewer material parameters. The uniaxial

form of the Bodner model as proposed in References [20-

22] is

•I _ -n+l Z2n oc =/ Doexp{ _ ( ) }

Z-Z= r

Z=m(Z,-z)wP-Azl (--Z_--l).

(4.12)

(4.13)
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A method of evaluation of the material parameters for

this model has been discussed in Reference [21]. The

flow equation (4.12) can be inverted easily. Since a

and _I are known from experimental data, the history of

Z can be calculated. This model fits very easily in

the scheme of material parameter evaluation outlined in

Section 4.2. The back stress is absent and the scalar

state variable Z in the Bodner model is treated as the

drag stress. The structure of the evolution equation

(4.13) is similar to that for the uniaxial form of the

back stress evolution equation (4.2). The major

difference is that the inelastic work rate, wP, rather

than the inelastic strain rate, _I, is used to control

hardening.

The computer code was modified and used to

evaluate all the material parameters in Equations 4.12

and 4.13. The limiting strain rate, DO, was chosen as

104 per second and m and Z1 were determined from the

high strain rate monotonic tensile tests. Since A, Z2

and r characterize static thermal recovery, these

parameters were found from the low strain rate tensile

and creep tests using

Z-Zz

AZI(_)r=z-m(Zl-z)wP. (4.14)
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Since only one state variable is involved in the model

the iteration procedure was not necessary for material

parameter evaluation.

Using the material parameters evaluated as

described above (see Table 4.1), the monotonic and

cyclic capabilities of the model were evaluated.

Figure 4.9 shows the experimental and calculated

results for uniaxial tensile tests of Rene" 80 at g82°C

(1800°F). The results are significantly better than

those shown in Figure 4.8. The model seems to be able

to span the strain rate range of .002 M-1 to .2 M -1

very well and the shape of the calculated curves match

the experimental results relatively well.

The cyclic capabilities of the model were checked

for strain rates of .002 M -1 and .2 M-1. The

experimental and calculated results using the Bodner

model are shown in Figure ¢.10. The model appears to

be poor in predicting the cyclic response, especially

at the high strain rate. The predicted cyclic

hardening follows from the strain hardening in the

tensile test; whereas, Rene" 80 is observed to

cyclically soften at 982°C. This appears to be a

problem in the Bodner model as proposed in References

[19,20] since only one scalar state variable is used to

predict both strain hardening and cyclic hardening or

softening.
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During the course of this investigation Bodner

[27] has modified his model. The revised model has

both an isotropic and directional state variable

Z:ZI+zD (4.15)

where ZD depends on a tensorial internal variable Bij.

Evolution equations are propsed for Z I and Bij in a

form similar to Equation 4.13. The use of the

kinematic variable Bij is intended to replace the use

of a kinematic back stress. A limited evaluation of

this was made using some material parameters

approximated from earlier results.

The addition of the kinematic variable Bij appears

to improve the cyclic capability of the model as shown

in Figure 4.11, for the saturated cyclic case when

ZI=Zl (a constant). A new prediction program was

developed using both Z I and ZD for the results shown in

Figure 4.11. It was observed that for the fully

reversed cyclic loading conditions the variation of the

state variable Z was not continuous as shown in Figure

4.12. The state variable Z shows distinct discon-

tinuities at points where the stress, a, changes its

sign. Jumps in the value of Z appear to be an artifact

of the model itself and not due to physical changes in

the material microstructure or deformation mode.
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4.5 Summary, of the Evaluations

The previous study was to evaluate in detail the

uniaxial capabilities of two types of unified models

for the behavior of Rene" 80 at 982°C. The generic

back stress drag stress model appears to have good

characteristics for representing cyclic hardening and

softening behavior. However, it performed poorly for

the monotonic tensile loading tests over the range of

strain rates from .002 M -1 to .2 M -1. The Bodner model

had much better monotonic tensile capabilities, but the

cyclic behavior was not adequate. It appeared unable

to represent strain hardening in the monotonic tests

and softening in the cyclic tests. Thus, it appears

that neither of these two models will be completely

adequate for representing Rene" 80 behavior for a wide

range of operating conditions.
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CHAPTER5

FORMULATION OF A NEW UNIFIED CONSTITUTIVE MODEL

The experimental results for Rene" 80 at 982oC in

the previous chapter showed that the generic back

stress drag stress model and the Bodner model are not

totally adequate for characterizing this material. Each

model had some desirable characteristics for specific

types of loading conditions. It is necessary that the

constitutive equation predicts both monotonic and

cyclic behavior. The model should have the correct

strain rate behavior at both high and low temperatures.

In addition, the equations must be applicable for both

proportional

conditions.

This

development

and nonproportional multiaxial loading

chapter contains a description of the

of a new constitutive model. The

development is based on uniaxial isothermal response of

Rene" 80. The primary emphasis is on predicting both

the monotonic and cyclic behavior. The isothermal

model is extended to other temperatures in Chapter 6.

The equations are developed in multiaxial form, and the

multiaxial response is presented in Chapter 7.
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5.1 Physical Basis for Back Stress and Dra 9 Stress

mechanisms.

dislocations,

transportation of

boundary sliding

general dependent

It is well established that inelastic deformation

is the result of a number of microscopic processes and

These include twinning,

climbing of dislocations,

atoms and vacancies

[32-37]. These processes

gliding of

diffusional

and grain

are in

rate,upon the material, strain

stress and temperature. It is also seen that in the

higher temperature regimes the inelastic flow is

primarily due to dislocation glide and climb with very

little twinning [32]. The yield and ultimate strengths

of a particular material depend heavily on its ability

to immobilize dislocations by pinning and restrict

dislocation multiplication. Restriction of dislocation

motion can arise from several sources in the undeformed

microstructure such as lattice resistance, solid

solution atoms and discrete obstacles such as

precipitates and grain boundaries. High temperature

superalloys, such as Rene- 80, derive much of their

strength from the gamma prime precipitates. During

loading a network of dislocation walls are formed which

develop into cells and subgrains within the material

[31,38]. These dislocation networks also act as

barriers to further dislocation motion.
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5.1.1 Back Stress

When a dislocation moving in a slip plane

encounters an obstacle such as a precipitate, its

further movement is restricted by pinning. The pinned

dislocation either cross slips or bows around the

obstacle changing the local stress state. The pinned

dislocations act to impede further dislocation motion

and dislocation pileups develop. The dislocation

pileups produce a net "back stress" which, in effect,

opposes further inelastic deformation. The existence

of a back stress has been experimentally established

[39). It may be viewed as a "threshold" stress which

must be overcome either mechanically or thermally to

produce further inelastic slip. Thermal activation can

aid in further inelastic deformation by dislocation

climb and cross slip. These mechanisms are generally

associated with recovery.

The back stress which develops due to dislocation

pileups is directional in nature. It reacts

differently to changes in the direction of loading.

For example, when the loading direction is reversed the

dislocation pileup at an obstacle can be decomposed

without the necessity of overcoming the obstacle

itself. This results in inelastic deformation in the

reverse direction at a lower stress, which is the well
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known Bauschinger effect. Thus, the directional nature

of the back stress is frequently modeled as "kinematic

strain hardening". For constitutive modeling, it is

then assumed that the back stress is a tensor valued

quantity that can be modeled as a kinematic variable.

Several other phenomena in high temperature

material behavior have been attributed to the existence

of a back stress. It is known that when a material is

loaded into the inelastic regime and unloaded, there is

a time dependent recovery of the inelastic strain.

This anelastic recovery has been observed in Rene" 80

as reported in Reference [1]. The initial inelastic

loading creates dislocation pileups and a back stress

opposing the applied stress. When the applied stress

is removed, the back stress creates an inelastic flow

in the reverse direction which decays with time.

Similar effects have been observed in stress relaxation

at various points in a hysteresis loop. It has been

shown experimentally that negative stress relaxation

can exist at a positive stress on the unloading branch

of a cycle [40]. This occurs when the applied stress

instantaneously falls below the back stress, resulting

in a negative inelastic flow even for a positive

applied load. Similarly, lateral softening effects

have been observed in some materials when the direction

of loading is shifted instead of reversed. This is
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also attributed to the presence of a directional back

stress which must be directional in nature _1].

5.1.2 Drag Stress

It has been observed experimentally that there are

several microscopic effects that are isotropic in

nature. These effects arise mainly from two sources;

(1) the mutual interaction of dislocations and (2)

physical changes in the obstacle structure itself.

These effects change the inelastic strain rate (drag)

and are associated with cyclic hardening or softening.

Dislocations move within a grain or subgrain until

they are stopped at a barrier or interact with one

another during their motion in a slip plane. There are

numerous dislocations, i.e., dislocation forests, which

propagate in an active slip plane. The intersection of

a dislocation with the forest dislocations results in

the formation of Jogs in the dislocation lines. These

jogs can impede the further motion of screw

dislocations. The dislocation interaction process is a

short range effect occurring over distances less than 5

to 10 interatomic distances; whereas, the strain

hardening effect from dislocation pileups is a longer

range effect [42].
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Another isotropic effect is related to the

physical changes in the obstacle structures as

inelastic deformation progresses. Such changes occur

over longer periods of time typical of creep or cyclic

loading conditions. In many superalloys the smaller

gamma prime precipitates can gradually dissolve and the

larger particles coarsen {38]. Such instability effects

usually occur at prolonged high temperature exposure.

The strengths of the precipitates themselves can also

change in time, making shearing easier. It has been

observed in a number of materials that during cyclic

softening the small dislocation cells produced during

initial prestraining grow to larger cells. The cell

size usually depends on the applied stress and

inelastic strain range [43-46]. The cyclic deformation

structure that develops is not reversible and it does

not seem possible to explain the cyclic softening

phenomenon solely based on variations of the subgrain

size. For example, Moteff has shown that similar

dislocation subgrains form during large strain

monotonic and low cycle fatigue tests for a cyclically

hardening material such as AISI 304 stainless steel

[47].

Both of these effects, the mechanical strength

variations of the precipitates and the evolution of

dislocation subgrains, certainly influence the cyclic
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inelastic behavior of the material. Moreover, this

influence is isotropic in nature and should be modeled

by a scalar variable. Thus, the drag stress is

frequently introduced to model the cyclic behavior of

the material.

5.2 Development of Flow Equation

Detailed analysis of individual crystallographic

slip systems and development of equations representing

individual dislocation movements and their interactions

is perhaps possible for very simple material systems.

However, for complex polycrystalline superalloys this

approach is impractical. Thus, many investigators rely

solely on phenomenological observations to propose a

constitutive model. In this work both approaches are

undertaken; that is, to propose a phenomenological

model based on the observed deformation mechanisms.

It has been shown by Gilman [48], from dislocation

velocity measurements [49] on pure crystals, that the

inelastic strain rate has an exponential dependence on

the ratio of the drag stress and the applied stress.

This concept has been used by Bodner for the

development of a constitutive model. However,

precipitation hardened superalloys develop a complex

dislocation substructure upon inelastic loading [31,38]
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which tends to oppose further inelastic straining. The

applied stress, Sij, must overcome the back stress,

_ij, in order to produce further inelastic strains.

Thus, (Sij-_ij) is an effective stress that is required

to produce inelastic flow. The exponential form of the

flow equation proposed by Bodner is extended to

incorporate the effective stress, (Sij-_ij). The back

stress, _ij, depends on orientation, and both the back

stress and drag stress depend on the history of

loading.

In addition, the flow rule should be consistent

with observed material behavior. The Prandtl Reuss

equation and the Bodner equation are written as

_j=XSij, (5.1)

where X is a scalar material function. Equation 5.1

requires that the direction of the inelastic strain

rate vector, _ij I, is coincident with the applied

deviatoric stress vector, Sij. However, recent biaxial

experiments on different materials have shown that this

is not necessarily true [27,50] for high temperature

superalloys. The angle between the two vectors varies

as a function of loading in a nonproportional

multiaxial test. The use of the back stress in the
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model permits the two vectors to have different

directions. Thus, the flow rule in Equation 5.1 is

revised to include a back stress,

ol
cij=_(Sij-Rij), (5.2)

where (Sij-_ij) is an effective driving stress

producing inelastic straining. Both Sij and _ij are

deviatoric quantities so that Equation 5.2 satisfies

the inelastic incompressibility condition. The scalar

parameter X can be found from the kinetic relation

using a procedure suggested by Bodner [21]. Squaring

Equation 5.2 and summing gives

1. I. I=X2 ½_cijcij (Sij-_ij) (Sij-_ij)" (5.3)

D I 1- I. I and
Using ==_cijcij

K2=½(Sij-_ij)(Slj-I_Ij),

the second invariants of the inelastic strain rate

tensor and effective deviatoric stress tensor,

respectively, the flow equation (5.2) can be written as
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I_/-_21 (Sij'_lij) (5.4)

The form of J D) must be chosen such that it de-

pends on the back stress, _ij, and drag stress, Z, in

addition to the applied stress for an isothermal

environment. Using the structure of the Bodner flow

law, one can assume

FA( z')n]JD-_'2=Dexp -L: . (5.s)

In Equation 5.5 D, A, and n are temperature dependent

material parameters. This equation has the form

suggested by the microdynamical considerations

discussed earlier. The exponent n is taken similar to

the Bodner model. Both A and n control the strain rate

sensitivity of the material. The parameter D can be

interpreted as a limiting value for the inelastic

strain rate at a particular temperature. Substituting

Equation 5.5 in Equation 5.4, the general multiaxial

flow equation is written as

I_ ' n](S -n )_i I-D exp A Z ij ijJ 7(3T') VRT,

112

(5.6)



A large number of the experiments in the area of

constitutive modeling are performed in the uniaxial

loading condition. Uniaxial tests are very useful in

the determination of the material parameters as well as

in evaluating the response of the model for complicated

histories of loading. The multiaxial form of the flow

equation can be simplified for the uniaxial case.

Tensor quantities are written with subscripts "ij".

The same symbol is used without the subscripts to

denote its uniaxial value.

are defined as

Uniaxial loading conditions

aij- 0 Sij - io

0 , 0 - ,

• I

cij=

m

_:I 0 0

o _ ½_x o

o o _ ½_x

and _ij =

uD

_ 0 0

0 - ½_ 0

0 0 - _Z

(s.7)

The parameter K2 becomes

(s.8)

and an effective inelastic strain is defined as
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•I //2_ I_ I
Ce=K s ij ij

(5.9)

for later use in the evolution equations. In uniaxial

oI
loading, ce:l II.

Using these and Equations 5.6 and 5.7, the uniaxial

flow equation becomes

F
_I--2D expl-

L
A Z (S.lO)

5.3 Development of the Evolution Equations

The flow equation can be used to determine the

inelastic strain rate when the applied stress, back

stress, and drag stress are known. The back stress,

_ij, and drag stress, Z, are internal state variables

which cannot be directly measured in an experiment.

They depend on the entire thermomechanical history of

loading; and, hence, their representations are sought

in the form of rate or evolution equations. It is

generally assumed that the rate of change of these

quantities at any instant in time depends upon the

current state of stress, inelastic strain rate,

temperature and the internal variables; i.e.,

• I
llij=F1(°ij' _ij' kliJ' Z, T)

114

(5.11)



and

I
Z:F'{°ij' _ij' _lij' Z, T). (5.12)

Representations for F 1 and F2 usually embody the

observed mechanical behavior such as strain hardening,

dynamic recovery, static thermal recovery and cyclic

hardening or softening. The state variables _ij and Z

can be interpreted as macroscopic representations of

the microscopic behavior of the material.

5.3.1 Uniaxial Back Stress Evolution Equation

The evolution equation for the generic back stress

drag stress model discussed in Chapter 4 appeared to

have the right characteristics. Recall that the

evolution equation had the following uniaxial form:

_-f,_I-f,QI _I I-R , . (4.2)

The first term in the above equation is used to

characterize strain hardening, the second dynamic

recovery and the function R1 models static thermal

recovery. The value of the back stress in an
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undeformed material state is taken as zero; i.e.,

_(0)=0. Furthermore, from Equation 4.2, at time zero

_I=o and R1 is negligible so that _(0)=0. It was also

shown in Chapter 4 that fl and f2 are constants for

Rene" 80.

It was shown that it is possible to estimate the

back stress and back stress rate by inverting the flow

equation (5.10) for a particular loading history. This

was done for tensile loading of Rene" 80 at g82°C for

four strain rates. Figure 5.1a shows the back stress

rate from the experimental data and Equation 4.2. Both

the test data and model are in reasonable agreement for

large strain and _ approaches zero as saturation occurs

at the end of the test. The prediction for _ in the

"elastic" region, where the inelastic strains cannot be

accurately measured, cannot be confirmed; i.e., the

test data does not show that _(0)=0. The back stress

and the applied stress during "elastic" loading are

shown in Figure 5.1b for the highest strain rate test.

The dotted line is the back stress calculated using

Equation 4.2. The difference (a-_), which is the

stress producing the inelastic strain rate, becomes

very large early in the elastic range and produces the

peaks in the curves shown in Figure 5.1a. This

response appears to be unrealistic. This problem in

the elastic region has been observed by other
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investigators [15] from other considerations. Thus,

let us assume the stress and the back stress are

proportional in the elastic region. This is shown by

the solid line in Figure 5.1b. This idea can be easily

incorporated in Equation 4.2 using a term that is

proportional to the stress rate.

To begin, first note that the constants fl and f2

in Equation 4.2 are related to the maximum value of the

back stress, _max, at saturation; i.e.,

fl

=_max" (5.13)

Using Equation 5.13 and adding a stress rate term, the

back stress evolution equation for uniaxial loading can

be rewritten as

l m--q!ci l, (5.14)

where the factor 3/2 is used for later convenience.

The physical significance of the stress rate term

in Equation 5.14 can be determined during "elastic"

loading or unloading when _I can be neglected. In this

case,
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_= _, (5.15)

where G is the initial slope of the back stress versus

total strain curve. Thus, Ga/E is a reversible

component of the total back stress that is recovered

instantaneously upon unloading. The total back stress,

_, can be viewed as having elastic and inelastic

components; i.e.,

+ (5.16)

The back stress evolution equation (5.14) can now be

refined as

_z_ ._f,;=z..}f B I;=Zl -R,.
_max

(5.17)

The results of using Equation 5.14 are significantly

better than those from Equation 4.2. A comparison of

the calculated behavior with experimental data is shown

in Figure 5.2a. Figure 5.2b contains a comparison of

the response of the total back stress Q and the

inelastic component QI during uniaxial tensile loading

at different strain rates. It is clear that the

"elastic" component of the back stress dominates in the
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early part of loading; whereas, the inelastic component

dominates as inelastic strains become significant.

5.3.2 Multiaxial Form of the Back Stress Evolution Equation

Equation 5.14 described the evolution of the back

stress for uniaxial loading conditions. However, multi-

axial loading conditions are present in most structural

applications. Thus, it is necessary to develop a

general multiaxial back stress evolution equation which

reduces to Equation 5.14 for the uniaxial loading.

A general representation can be obtained by

considering the material parameters in Equations 5.16

and 5.17 as fourth order tensors; i.e., assume

_ij=EijkISk1+_i)
(5.1B)

and

•I I _IIlij=fijkl _kl-gijkl%Ikl I I "Rij"
(5.19)

Since the material being investigated is Isotropic, it

is reasonable to assume that the material parameters

fijkl, etc are isotropic tensors. The fourth order
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isotropic tensor fijkl, for example, can be written as

[51]

fijkl = a6ij6kl+b( 6 ik6jl+Oil 6jk)+C(Oik6jl-Oil Ojk).(5.20)

Since the inelastic strain rate tensor, _ij I, is

symmetric the back stress tensor, _ij, is also sym-

metric; thus, the last term in Equation 5.20 can be

eliminated. Expanding the first term of Equation 5.20

yields

]ifijklCkl = 6ij 6k1+b (6ik6j1+6i 16jk ) _:kl (5.21)

and

(5.22)

Since _kkI=O due to incompressibility, the first term

in Equation 5.19 reduces to

• I=f I IfijklCkl _ij' (5.23)

where fl is a scalar parameter. Using the same

reasoning, it can be shown that Eijkl and gljkl reduce

to G/E and 3fl/2_ma x, respectively. Thus, it is seen
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that for isotropic response the material parameters in

Equations 5.18 and 5.19 are scalar. Hence, the

multiaxial form of the back stress evolution equation

can be summarized as

_lij= _Sij+ _¢i_ (5.24)

and

Ilij=fl_ j- fl limax e- lj'

where _e I is given by Equation 5.9 and fl, G and _max

are the scalar parameters determined from the uniaxial

experiments.

5.3.3 The Drag Stress Evolution Equation

The drag stress is a scalar quantity introduced to

represent isotropic hardening or softening effects.

Physically it is interpreted as being a macroscopic

representation of the resistance offered by the

microstructural precipitates and grain boundaries to

dislocation motion.

Rene" 80 at 982°C can cyclically soften. As shown

in Figure 3.9 this softening is seen to be strain rate
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dependent with significant softening at high strain

rates and no softening at low strain rates. In most

models cyclic hardening or softening is taken as being

dependent on the accumulated inelastic strain.

Measures of cyclic softening based on accumulated

inelastic strains are not adequate; because, for the

same value of accumulated strain the predicted response

to high and low strain rates would be the same.

However, a measure based on accumulated inelastic work

would produce different response for the high and low

strain rates.

A representation for the drag stress is proposed

which is identical to the Bodner Equation; i.e.,

Z=m(Z_-Z) I-R2, (4.13)

with the initial condition Z(O)=Z o. But the physical

interpretation and the role of the drag stress are

different from the Bodner model. In the above

equation, the drag stress models cyclic softening

with Zo>Zl; whereas, Bodner used Equation 4.13 to model

strain hardening in the tensile response with Zl>Z o-

The value of Z1 in Equation 4.13 is the saturated value

of the drag stress Z and the rate of cyclic softening

is determined by the parameter m. In the experiments
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performed on Rene" 80, there was no time dependent

recovery of the cyclically softened state; hence, the

recovery term R2 is omitted. In this case, Equation

4.13 can be integrated to give

.mW I

Z=Zl+(Zo-Zl)e (5.26)

Since Zl_Zo, Equation 5.26 represents Z as a

monotonically decreasing function of the accumulated

inelastic work, W I. This happens after a sufficient

number of cycles in a cyclic test.

5.4 Evaluation of the Material Parameters

The material parameters in the model can be

determined from uniaxial test data using a procedure

similar to that outlined in Chapter 4 for the generic

back stress drag stress model. Recall, two assumptions

were made as part of this analysis. First, the back

stress is saturated at the end of tensile tests,

_=_max. Second, the drag stress variation is small for

the tensile tests, Z=Zo . The flow equation (5.10) can

be inverted to give

(a _ o )2n= . In --_-_j (5.27)
s max
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where the subscript s in the above equation indicates

saturation. The constant A is related to the strain

rate sensitivity at lower temperatures. At 982°C, A is

taken as unity. The scaling factor D is taken as one

per second. Zo, nma x and n are then determined from a

number of monotonic tensile tests at different strain

rates.

The history of the back stress for a particular

unlaxial loading history can be calculated using

o:o_ I_ (5.28)

For tensile tests Z=Z o is used initially, consistent

with the second assumption made earlier. The initial

slope of the back stress versus strain curve, G, in

Equation 5.16 is then determined. Using Equation 5.28

the back stress rate, _, is calculated numerically.

The constant fl in Equation 5.17 is then determined.

The material

evolution equation

different manner.

as

parameters in the drag stress

are determined in a slightly

The flow equation is first inverted

z-(o-n) X'ln --'Z'0-
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Notice from Equation 5.26 that when the accumulated

inelastic work W I is large, such as in a cyclic test,

Z=Z 1. The back stress history is first calculated for

a saturated cyclic hysteresis loop using Equation 5.28.

Since the starting value for _ for the saturated cycle

is not known, an iterative procedure is necessary. The

average value of Z1 is then determined using Equation

5.29 and two saturated cyclic hysteresis loops at high

and low strain rates. The remaining parameter, m, is

determined using Equation 5.26 and performing nonlinear

regression of monotonic and cyclic test data. The

various parameters are listed in Table 6.1.

5.5 Static Thermal Recovery

Almost all the unified constitutive models have

static thermal recovery terms added in the evolution

equations. This can be done in the model proposed,

using R 1 and R 2 in Equations 4.13 and 5.17. These

static thermal recovery terms purportedly model

thermally activated processes, such as dislocation

climb and cross slip, and are active only for long

duration tests, such as creep and stress relaxation.

The origin of such an approach can be traced to Orowan

and Bailey [52,53].
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In general, functional forms for the static

thermal recovery term R1 in the back stress equation

(5.17) can be determined, based on the creep tests and

low strain rate tensile tests. However, in the

proposed model, the predictions are very good for creep

and stress relaxation tests at g82°C without the use of

R I. Thus, it is concluded that the necessary recovery

effects, at least at g82°C, are already included in the

dynamic recovery term in Equation 5.17.

The drag stress variation models cyclic softening

or hardening and is physically related to the

mechanical changes occurring to the precipitates.

These changes are irreversible and cannot be recovered.

Thus, it is not expected that a recovery term R2 in

Equation 4.13 should be necessary.

5.6 Application to C_clic Load Histories

The constitutive equations (5.6), (5.24), (5.25),

and (4.13) have been programmed to calculate the

material behavior for different load histories. The

program performs numerical integration of these

equations using a forward Euler scheme. One of the

difficulties involved in using unified constitutive

models is that they require a large number of time

steps for many loading histories, with each time step

128



involving a number of iterations. This makes

predictions difficult when a large number of cycles are

Involved. Many tests in the experimental program

described in Chapter 3 are under cyclic conditions.

Recall, these tests were performed in cyclic blocks,

involving a series of strain ranges, as shown in Figure

3.3. To predict the response of the model during such

a test would involve integrating the constitutive

equations cycle-by-cycle for the entire test. This

approach was abandoned as being too expensive.

Instead a new scheme is proposed which ltmits the

actual integration to only those cycles where

significant transient behavior is expected. In the

beginning of each cyclic block integration is performed

for a few cycles until the back stress hysteresis loop

stabilizes. The inelastic work from the latest cycle

is then extrapolated to the final cycle of that

particular block. The drag stress at the beginning of

the last cycle is calculated using the extrapolated

value of the inelastic work and Equation 5.26.

Complete integration Is then performed for this final

cycle of the current block and continues to the next

block until the transients again stabilize. The same

process is then repeated for the entire test sequence.

This scheme is illustrated in Figures 6.3, 5.4, and

5.5. Figure 5.3 shows the strain history imposed. Two
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transient loops are taken in each block. Figure 5.4

shows the behavior of the drag stress using the

extrapolation scheme. Figure 5.5 shows the nested

hysteresis loops calculated for the three cyclic

blocks.

This scheme was used for making model predictions

for all the uniaxial and multiaxial tests.

Conceptually, this scheme can be made more

sophisticated, based on some well chosen criteria for

extrapolating the state variables. This can provide a

powerful tool for analyzing long time load histories

with minimal amount of computation.

5.7 Anal),sis of Rene" 80 Behavior at g82°C

In this section, some typical examples are given

comparing the predictions of the proposed unified model

to Rene" 80 experimental results at g82°C. The material

parameters used for the predictions are given in Table

6.1.

The tensile test results and model predictions are

shown in Figure 5.6. The model is seen to represent

the strain rate sensitivity very well. The saturated

values of the stresses and the shapes of the stress

strain curves are reasonably well predicted. Recall
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that some of these results were used in calculating the

material parameters for the model.

Figure 5.7 shows the results of the creep analysis

at two different stress levels. The agreement between

the model and test data is very good. The creep data

was not included in the analyses for material constant

evaluation.

The cycltc analyses are shown in Figures 5.8-5.12.

Figures 5.8 and 5.9 are the cycltc saturated loops at

the high (.2 M-1) and low (.002 M-1) strain rates,

respectively. These two loops had been used in

evaluating Z 1 and m in Equation 4.13. The predictions

were made using the extrapolation scheme presented tn

the prevtous section. The correlation between the

model and the test data appears good.

The rest of the cycltc test results shown are pure

predictions. That is, none of these data were used in

constant evaluation and the predictions are based on

the extrapolation scheme. Ftgure 5.10 shows a cycltc

test with a compressive mean strain. Notice that the

mean stress relaxes as cycltng progresses. The model

also predicts exactly the same transient behavior. The

first two cycles are shown in Figure 5.10a. A

saturated cycle (cycle number 78) is shown in Figure

5.10b. The agreement between the model and test data

is excellent. This is a low strain rate (.002 M -I)

135



o Experimental data

- Model prediction

o

M'J ! i.t_ i I'-.050 - .025 ,, .025 .050
STRRIN "10 "!

Figure 5.8 Predicted and Experimental Saturated Cyclic Loop,

982°C, .2M "I

D
O.

o
o.

(3;

r

U'JO"

W

_g
!

o Experimental data

- Model prediction

o
o
qP

I I ! •! .08 -.04 0 ,04 .08
STRRIN =10 "1

Figure 5.9 Predicted and Experimental Saturated Cyclic Loop,

g82°C, .O02M -I

136



0
C;). A,o Experimental data

- Model prediction

(a)

- .028 -'.018 -'.008

$TRRIN mlO "_

First Two Cycles

(b)

Figure 5.10

0
O.

0
O.
t_

_r
0_

w

(/_0'

O3

W

I

o Experimental data

- Model prediction

0
0

I_ .12 -'.08 -'.04 0 .04
STRRIN =lO "_

Cycle No. 78

Predicted and Experimental Cyclic Behavior,

982°C, .O02M -1, Ac= -1

137



C:).

0.

GE
Q_

w

O0 C:)"

03

LLJ

OC

F-

03=0
!

0

I
- .04

o,_,+ Experimental data

- Model prediction

-' O'-'.03 .02 -'.01

STRRIN EIO "I

(a) First Four Cycles

(b)

Figure 5.11

0
O°
,t

o Experimental data

- Model prediction
0
I_.
@d

rr
G..
r
w

(/,pC)"
03
I,i
rv-

0,1.
!

0
0

'- .08 -'.06 - .04 - ,02 0

STRRIN =I0"

Cycle No. 58

Predicted and Experimental Cyclic Behavior,

982°C, .2M'I

138



(a) First Cycle

Experimental data

Model prediction

' 01 '- .01 .01
$TRRIN =10 "t

!
.02

==l

(b)

Figure 5.12

o Experimental data

- Model prediction

0
0

i 01 ! !'- .OSO .025 .02S .050

STRAIN "10 "1

Cycle No. 30

Predicted and Experimental Cyclic Behavior,

982°C, 12 Second Hold Time

139



test. The results are not as good for a similar test

at high strain rate (.2 M-l), as shown in Figure 5.11.

Figure 5.12 shows the results for a 12 second

compressive strain hold cyclic test. The amount of

stress relaxation predicted by the model is in good

agreement with the test data. The hysteresis loop is

also predicted very well.

In summary, the model is seen to be capable of

representing well the rate dependent Rene" 80 behavior

at g82°C under monotonic, cyclic, and creep loading

conditions. In particular, the mean stress transient

behavior is predicted very well. This is expected to

enhance the low cycle _atigue life analyses. The creep

and cyclic stress relaxation predictions are very

encouraging.
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CHAPTER6

NONISOTHERMAL LOADING CONDITIONS

The constitutive modeling discussed in the

previous chapters was directed toward identifying the

physical basis of the model and developing the mathe-

matical structure. Procedures were also developed to

evaluate the various material parameters. Further, the

capabilities of the model were verified for monotonic,

cyclic and creep loading histories for Rene" 80 at

982°C. In actual service, however, blades and vanes

are subjected to a variety of temperatures.

Extending the model to other temperatures is

challenging because the low temperature behavior of

Rene" 80 is significantly different from its high

temperature behavior. Recall, the major differences

are in strain rate sensitivity (Figures 3.5 and 3.6),

cyclic softening (Figures 3.9 and 3.11) and ductility

(Figure 3.4). The objective of this phase of the

research is to extend the new model to various other

temperatures. It will be shown that this can be done

essentially within the same mathematical framework of

the model developed in Chapter 5. The isothermal form

for the constitutive model is summarized below for

convenience:
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' n](s -n )A Z 2 ij ij
_i =D exp - (_) v'l_-_

, (5.6)

nij= _Sij + _ Iij'
(5.24)

I I.f ___ _. R ,_ij=f1_ij l ij
(5.25)

2=m(Z1-Z)_I-Rz, (4.13)

where, K2-_ (S ij-I_ij) (S ij-_ij),

X: max "

•I 12 _ .I¢e=J_ _ J¢ij and,

In nonisothermal 1oadlng conditions, it is

expected that the model parameters are temperature

dependent; i.e., D(T), A(T), n(T), etc. In addition,

the saturated values for the back stress, _max, and

the drag stress, Z, are also dependent on the temp-

erature. The temperature dependence can be estimated

from experimental data at various constant temperatures

if temperature rate effects are neglected. In addition

to g82°C (1800°F), experimental data for Rene" 80 is

available at 871°C (1600°F) and 760°C (1400°F).

* The formulation for the steady state value, X, of

the back stress is modified, as shown later in this

chapter.
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A limited amount of data is also available at 1093°C

(2000oF), 649oC (1200OF) and 538°C (IO00°F). Methods

for evaluating the material parameters were discussed

in detail in Chapters 4 and 5. In general, the same

procedures were used at the other temperatures.

However, at 760°C (1400°F) and below there are some

differences which will be discussed later in this

chapter.

6.1 Tenslle Response at Various Temperatures

As discussed in Chapters 4 and 5, most of the

material parameters in the constitutive model can be

evaluated from the experimentally measured tensile

response of the material. A number of monotonic

tensile tests have been performed for Rene" 80 at

various temperatures and strain rates as shown in Table

3.3. The results of these tests clearly show the

differences in the material behavior at the various

temperatures.

The major result of the monotonic tensile tests is

that the strain rate sensitivity of Rene" 80 is seen to

be strongly dependent upon the temperature. As shown

in Figures 3.5 and 3.6, at high temperature (g82°C) the

strain rate sensitivity is high; whereas, at low

temperature (538°C) there is no strain rate
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sensitivity. It was seen that at 871°C, Rene" 80

behavior is strain rate dependent, although to a

smaller extent than at g82°C. The results at 760°C are

mixed. There is more scatter in data at this

temperature and no strain rate sensitivity is evident.

Other investigators have also reported considerable

scatter in experimental results of Rene" 80 at 760°C

|31|. Recall, the ductility of Rene" 80 is strongly

dependent on temperature, as shown in Figure 3.4. The

ductility is poor at 871°C and 760°C and the tensile

tests at these temperatures failed at low values of

strain before saturation was reached. The saturated

values of tensile stress at 871°C and 760°C were deter-

mined by extrapolation.

The saturated value of stress in the tensile tests

is plotted as a function of temperature in Figure 6.1

for three strain rates, .2 M -1, .02 M-1, and .002 M -1.

The saturated values of stress are ordered with respect

to the strain rate at all temperatures except 760°C.

The saturated tensile stress increases with decreasing

temperature, reaching a plateau at 760°C and below.

The reduction in strain rate sensitivity at lower temp-

eratures is also evident in Figure 6.1.
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6.2 Evaluation of Material Parameters at Low Temperatures

A systematic method of evaluating the various

material parameters in unified models was outlined in

Chapter 4. This procedure was later used for Rene" 80

at g82°C, as discussed in Chapter 5. At 871°C Rene" 80

behavior is generally similar to that at g82°C and the

same material parameter evaluation procedure was used.

The saturated value for the back stress, _max, the

initial value of the drag stress, Zo, and the exponent

n in the flow equation (5.10) were determined from the

saturated condition of the three monotonic tensile

tests. The scaling parameter D was chosen to be ten

per second. Then the history of the back stress, _,

was calculated for the entire tensile test by inverting

the flow equation (5.10) and assuming Z=Zo=constant.

The various parameters in the back stress evolution

equation were then calculated exactly the same way as

for g82°C. The drag stress equation parameters were

also calculated exactly the same way, using two

saturated cyclic hysteresis loops.

However, at 760°C and lower, the lack of strain

rate sensitivity, ductility and consequent data

scatter, required some modifications in the constant

evaluation scheme. First, the saturated value of

the back stress, _max, cannot be evaluated using the
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same technique. The values of _max at 982"C and 871"C

are plotted in Figure 6.1. It is seen that the

effective stress (o-Q) increases at lower temperatures;

i.e., a larger value of the effective stress (o-Q) is

required in order to produce the same inelastic strain

rate. It is assumed that this trend continues at

temperatures lower than 871°C. Thus, the Qmax versus

temperature curve ts extrapolated up to 760°C. Since

the saturated value of the stress reaches a plateau at

760°C, it is reasonable to expect that the saturated

back stress, _max, shows a similar behavior. This has

been confirmed using experimental data from the three

tensile tests at 538°C. Thus, an approximate curve is

constructed for the variation of Qmax with temperature.

This is also shown in Figure 6.1. The values of Qmax

at 760°C and below are taken from this curve.

The untaxial form of the flow equation (5.10) at

the saturated condition in a tensile test can be

written as

2D ) =.,_( Zo )Zn
•I °s-_maxI n (/3" Cs

(6.1)

In the above equation, the subscript s indicates

saturation. Notice that _sI=_, the applied strain
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rate, which ranged from .002 M-1 to .2 M -1. At 760°C,

as is essentially strain rate independent and _max is

found from Figure 6.1. The initial value of the drag

stress, Zo, is considered temperature independent and

known. Then, the parameters D, A, and n are determined

such that predicted values of Os using Equation 6.1 for

strain rates from .002 M-I to .2 M -1 are within the

scatter of experimental results. Once these flow

equation material parameters are known, the back stress

evolution equation parameters fl and G/E can be

determined, using the same procedure as for g82°C and

871oC. The various material parameters at 760°C are

listed in Table 6.1. Their variation with temperature

is shown in Figures 6.2-6.5. The average elastic

modulus from the uniaxial tests at several temperatures

is shown in Figure 6.6.

6.3 Calculated Tensile Response

The monotonic tensile response of Rene" 80 has

been calculated at 871°C, 760°C, and 538*C using the

material parameters shown in Table 6.1. The

calculations are for three strain rates, .2 M-1, .02

M-1 and .002 M-1. The results are compared with

experimental data in Figures 6.7, 6.8, and 6.9.
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Figure 6.6
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At 871°C, the strain rate dependent behavior of

Rene" 80 is modeled very well, as evidenced by the very

good agreement between the calculated response and the

test data. This is to be expected, since the material

parameters were based on these data. However, the

applicability of the model at 871°C is verified.

Figures 6.8 and 6.9 show similar results at 760°C and

53B°C. The agreement between the model and test data

is again good. Notice the large difference in the

strain rate sensitivity at 871°C and 538°C. The model

predicts a small amount of strain rate sensitivity at

760°C. The results are, however, in close agreement

with test data. This is a very significant result

because it demonstrates that the unified constitutive

equations developed here can model strain rate

independent behavior at high temperatures. This

essentially verifies the temperature capabilities of

the model and constitutes a major step in nonisothermal

modeling.

One monotonic tensile test was performed at 64g°C

(1200oF) at a strain rate of .02 M -1. The tensile

response of this test was calculated based on

interpolated values of the various material parameters.

The results are shown in Figure 6.10. The agreement

between the model and the test results is excellent.
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This verifies that interpolation of the material

parameters is possible at the intermediate temperatures.

This indicates that the thermomechanical cyclic

predictive capability of the model may be good.

6.4 The Cyclic Response of Rene" 80

Gas turbine engine components can experience

cyclic loads during service. Thus, constitutive

modeling of cyclic material behavior is very important.

A large number of cyclic tests have been performed on

Rene" 80 at 982°C, 871°C and 760°C. In Chapter 5, the

cyclic response of the proposed constitutive model at

982°C was found to be in very good agreement with

experimental data for a wide variety of cyclic tests.

This section describes similar results for 871°C and

760°C.

At 871°C, cyclic softening behavior in the first

few cycles was observed, similar to 982°C. The

softening is isotropic in nature and is modeled using

the drag stress (Equation 4.13) which decreases as a

function of the accumulated inelastic work. The

material parameters related to the cyclic softening

model were determined using cyclically saturated

hysteresis loops, as described previously, and are

recorded in Table 6.1. At 871°C, the rate of cyclic
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softening is much less than at 982_ and it is not

certain from the test data that cyclic saturation had

been reached for all the tests.

6.4.1 Cyclic Predictions at 871°C

Cyclic behavior predictions have been made for the

various cyclic tests at 871oC using the cyclic

integration scheme described in Section 5.6. Figure

6.11 shows the results for a fully reversed, high

strain rate (.2 M -1) cyclic test. Loops are shown for

cycles 64 and 116. The latter is near the end of the

test and is considered as the saturated hysteresis loop

for material parameter evaluation.

The model appears to predict the cyclic behavior

very well at this strain rate. The saturated

hysteresis loop for a similar test at a low strain rate

(.002 M -1) is shown in Figure 6.12. The model predicts

less softening, and there is some difference in the

elastic modulus. Notice that the test data shows a

slight tension-compresslon asymmetry. The stress

relaxation during a 120 second tensile strain hold is

shown in Figure 6.13 for cycle 50 in the test. Next, a

compressive mean strain test (A¢=-1) was run to induce

mean stress transient behavior. The first four cycles

of a test at a strain rate of .002 M -1 are shown in
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Figure 6.14a. The compressive mean stress is seen to

relax to a stable value after a few cycles. Figure

6.14b shows the steady state hysteresis loop for cycle

64. The predictions appear good especially considering

that this result is after a number of transients due to

changes in the strain range.

6.4.2 Cyclic Predictions at 760°C

In general, a11 the cyclic tests at 760°C showed

very little inelasticity even for the largest strain

ranges. Since there is no cyclic softening at this

temperature, the cyclic predictions were made using a

constant drag stress (Z=Zo). Figure 6.15 shows cycle

114 of a fully reversed, high strain rate (.2 M -1)

test. The model predicts a larger inelastic strain

range; however, the experimental result (AcI=.o005) is

near the resolution of the extensometer. The tensile

peak stress is predicted well but not the compressive

peak. Notice that there is a tension-compression

asymmetry in the experimental results. Figure 6.16

shows cycle 54 of a fully reversed cyclic test at .002

M -1. Both the model and test data contain a larger

inelastic strain range as compared to the high strain

rate test. Again, the model overpredicts the inelastic
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strain range, and there is also asymmetry in

experimental results.

Figure 6.17a shows the various hysteresis loops

predicted by the model for a cyclic test with a tensile

mean strain (A¢=+1) at .2 M -1. Notice that the peak

stresses decrease during cycling, and the mean stress

decreases. The loops shown in this figure represent

the entire history of 183 cycles. Notice also the

influence of reversed inelastic flow on the subsequent

cycles. The predicted results are compared with test

data in Figures 6.17b, 6.17c and 6.17d for various

cycles. Even though cycle 45 (Figure 6.17b) and cycle

85 (Figure 6.17d) have the same strain range, the

stress ranges are very different due to the inelastic

strain history and mean stress relaxation. Figure

6.17c shows the hysteresis loop for cycle 63 which has

a higher strain range and, hence, shows a larger, but

still very sma11, inelastic strain.

Figure 6.18 shows the results for a 120 second

tensile strain hold cyclic test. It is significant to

note that the test result shows some stress relaxation,

even though the tensile behavior at 760oC is rate

independent. Cycle 20 (Figure 6.18a) is almost elastic

with a small amount of stress relaxation. Cycle 94 has

a larger strain range and shows larger inelastic
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strains and stress relaxation. The model appears to

predict the amount of stress relaxation reasonably

well. In general, there is a significant difference in

the elastic moduli of the various test specimens. An

average elastic modulus was used for all calculations.

6.5 Creep Response at 8710C and 760°C
L

Recall, Rene" 80 displayed strain rate independent

tensile behavior at 760°C and below. However, as shown

in Figure 6.18, stress relaxation was observed during a

120 second tensile strain hold. It has also been

observed that at high values of stress, creep also

occurs at 760°C. The unified model could predict

reasonably well the time dependent response at 982%

and strain rate independent tensile behavior and short

time stress relaxation at 760°C. The creep response is

a long time behavior, and it was found that it could

not be predicted

investigation of

results.

The

well. This led to a further

the monotonic and creep response

saturated values of the stress and strain

rates in the tensile and creep tests are shown in

Figure 6.19. At 982eC, the monotonic and creep results

are consistent; however, this is not the case at 871°C

and 760°C. At 871°C, strain rate sensivity is present
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in both the short time (tensile) response and the long

time (creep) response. However, there is a distinct

discontinuity in the curve between short time and long

time results. At 760°C, there is no rate dependence in

the tensile data, but creep is present.

Static thermal recovery effects in the long time

response of materials have traditionally been modeled

using terms like Rij in Equation 5.25. A number of

attempts at this showed that such static recovery terms

in the proposed model are not effective in modeling

creep behavior. An examination of the evolution

equation (5.17) for the back stress shows that it

approaches a steady state value, as, during creep and

this value is not the same as _max, determined in the

high rate tensile tests. Thus, for long time creep

response, the steady state back stress decreases as

shown in Figure 6.20 for creep at 760°C. Physically,

this could correspond to dislocation ptleups decreasing

through a dislocation cltmb process over long periods

of time.

The back stress recovery can then be modeled as

_s = _A(o_o)n(_ls.nsat ), (6.2)

where _s(O)=_max • In Equation 6.2, Qs is the steady
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state value of the back stress; _sat is the saturated

value of the back stress observed in untaxtal monotonic

and creep tests. The value of _sat is expressed as a

function of the effective stress, as shown in Figure

6.20. A lower bound is imposed on the minimum value of

_sat to represent the minimum value of the back stress.

Modeling long time recovery effects using the saturated

value of back stress has been suggested by other

investigators also [54].

The results of using the back stress recovery

equation (6.2) appear to give good results for Rene" 80

at 760°C and 871°C. Figure 6.21 shows the results for

the three creep tests at 760°C. Both the high stress

and low stress creep results appear good; whereas, the

intermediate stress case is not predicted quite as

well. Similar results are shown in Figure 6.22 for the

three creep tests at 871°C. It was found that the

creep predictions at the lower temperatures are very

sensitive to the saturated value of the back stress,

In summary, it is seen that the proposed

constitutive model is applicable for a range of

temperatures. It is able to model the strain rate

sensivity difference at high and low temperatures. The

monotonic, cyclic, and creep predictions are in good
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agreement

760°C. A

predicts

well.

with experimental data at 982°C, 871°C and

new form of recovery model is proposed which

low temperature creep behavior relatively
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TABLE 6.1

MATERIAL CONSTANTS FOR PROPOSED MODEL (RENE" 80)

TEMPERATURE

982oC 871oC
Constant (1800oF) (1600"F)

n .2418 .3005

D sec -1 1.0 10.0

A 1.0 1.0

fl MPa 2.88x104 4.65x104

f2 .3005 .2926

f3 .4772 .4566

f4 MPa 10.3 -29.5

f5 sec-1 4"526x10"4 2"126x10-3

r 8.458 3.0609

x I MPa 91.8 91.8

x 2 MPa 188.4 256

_max MPa 283 384

m MPa -1 .103 .0126

Z o MPa 5. lx104 5. lx104

Z 1 MPa 4.0x104 2. lx104

760 °C 538 °C
(1400"F) (IO00oF)

.6 1.0

10,000 10,000

.0609 .000916

4.97x104 4.86x104

.4944 .5058

.5018 0

-28.3 0

7.625x10 -7 0

13.7 0

229.6 367.4

367.4 367.4

551 551

0 0

5.1x104 5.1x104

2.1x104 2.1x104

175



CHAPTER 7

MODELING MULTIAXIAL RESPONSE CHARACTERISTICS

Almost all the constitutive models that have been

developed to date are based on uniaxial experimental

results. This is due to a lack of an adequate

multiaxial behavior experimental data base. The

typical approach has been to extend the uniaxial model

to multiaxial cases based on equivalent stresses and

strains [55] and the assumption of plastic

incompressibility. However, such approaches can lead

to significant errors for some types of materials and

multiaxial loading conditions [56].

In the model proposed here the material functions

in the evolution equation for the back stress were

considered as fourth order tensors. This form of the

equation is more general than the uniaxial form. For

the case of an incompressible isotropic material the

constitutive parameters reduced to scalar functions

that can be determined from the uniaxial response. The

resulting multiaxial constitutive equations (4.13, 5.6,

5.24, and 5.25) are fairly simple. Recall, the

uniaxial response of the model was verified for a

number of experiments at several temperatures. In this

chapter the multiaxial capabilities of the model will

176



be described in detail. The multiaxial loading

conditions and the associated material phenomena are

briefly discussed first.

7.1 Multiaxial Material Behavior

The multiaxial material response poses major

challenges both experimentally and theoretically. Most

of the multiaxiality studies to date have been

concerned with the analysis of low cycle fatigue life

[57-61] and the development of appropriate failure

criteria. The multiaxiality effects on fatigue life

arise mainly due their impact on the cyclic inelastic

behavior. Multiaxial predictions are also important

for the dimensional stability of structures such as

blades and vanes. Thus, it is important that

constitutive equations be able to model the cyclic

inelastic response under multiaxial loading conditions.

There are two basic types of multiaxial loading

conditions: proportional and nonproportional. Under

conditions of strain control, proportional loading is

defined by

cij{t)--F{t).Cij, (7.1)

where Cij is independent of time and F(t) is a scalar
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function of time. Equation 7.1 implies that all the

components of the strain tensor ¢ij vary propor-

tionately in time at all locations in a structure.

Proportionality can also be defined for the stress

tensor, oij [57]. In general, these two definitions

are not equivalent when inelastic strains are involved.

In some high temperature applications such as blades

and vanes of gas turbines, approximately proportional

loading conditions prevail. However, in most

applications loading conditions are usually

nonproportional.

The effects of the proportionality or

nonproportionality of the multiaxial loading are most

significant in the cyclic behavior of the material.

Usually it is assumed that materials which cyclically

harden or soften attain a unique final state. Based on

this assumption the _ cyclic transient behavior is

neglected and only the stable behavior is modeled,

using a cyclic stress strain curve [62-64]. These

approaches were proposed based mostly on uniaxial

experiments. However, it has been experimentally shown

that, under multiaxial loading conditions, the

assumption of a unique cyclically stable state is valid

only for proportional loading [65-67]. For nonpro-

portional loading conditions, a number of cyclically
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hardening materials are found to attain cyclically

stable states which are harder than that attained under

proportional loading conditions |56,60,65,68,69). How-

ever, there is very little experimental data available

under nonproportional multiaxial loading conditions for

cyclically softening materials. It has been suggested

that cyclically softening metals may soften less or

even harden under nonproportional loading [70].

The additional hardening observed

nonproportional loading conditions

attributed to the differences

deformation mechanisms. For

Equation

has generally

observed in

proportional

7.1, the principal directionscycling,

applied strain are

expected that slip

limited to a few,

constant. In this case

and dislocation interactions

favorably oriented planes in

grain during the entire loading cycle. However,

nonproportional loading the

the maximum shear planes

example, in 90 degree out

cycles, the maximum shear

through all the planes.

interaction also occurs

nonproportional cycling

level of dislocation

responsible for the

principal

are not

of phase

conditions. This

interactions is

additional hardening. In

directions

for

been

the

strain

of the

it is

are

each

for

and

constant. For

tension/torsion

plane continuously sweeps

Similarly, dislocation

on all the planes under

increased

largely

addition,
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deformation induced material transformations have also

been reported for some materials [71]. These general

implications of observed differences in material

behavior for proportional and nonproportlonal loading

cycles have not been established for Rene" 80.

Constitutive modeling must be guided by

experimental results for both proportional and nonpro-

portional multiaxial loading cycles. The followlng

sections describe the modeling of Rene" 80 at g82°C and

871°C at two strain rates, .02 M -1 and .002 M -I. Pure

torsion results are also included for comparisons with

proportional and nonproportlonal tension/torsion

results. The constitutive model developed in Chapter 5

is used to predict the response. The predictions are

based on Equations (4.13, 5.6, 5.24, and 5.25) wlth no

additional terms for nonproportlonal loading. The

material parameters used are those shown in Table 6.1.

7.2 Pure C_cllc Shear Response

The proposed constitutlve model was developed In

fully three dimenslonal form. The material parameters

in the model were evaluated based on unlaxlal

experiments as discussed previously. Another

verification of the constitutive model can be obtained
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by predicting

torsion tests.

¢ij-- = 0
0

the experimental results

For pure shear loading

sij- o
0

from pure

F:_== 0 0 I_== 0
• I

"iJ=L¢1o'°o , _ij = i=0 o

(7.2)

and

K, (_-QI=) = .I 2_nd ---;_, .
= ee /]'

The tensorial shear strain, ¢12, (half of the engi-

neering shear strain y) is used throughout this study.

Using Equation 7.2 the constitutive equations (4.13,

5.6, 5.24, and 5.25) for pure torsion become

• z¢i I= D exp {/_(T-QI=)
(7.3)

• _ I QI, . I
_= =f:,cl=-,/_fl_--'_a x ¢1= (7.5)
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I (7.6)Z=2m(ZI-Z)_12

Equation 1.5 predicts that for monotonically

increasing torsional load, saturation occurs when

fl_2 J_ max' where flmax is the saturated value of the

back stress determined from uniaxial tensile tests.

This has been verified in the computer program used to

make the analytical predictions, using the same

equivalent strain rate for tensile and torsional

loading.

Pure cyclic torsion tests were performed using

cyclic block sequences with variable strain ranges,

similar to the uniaxial cyclic tests shown in Figure

3.3. Two strain rates, .02 M -1 and .002 M -1, and two

temperatures, g82°C and 871°C, were used. In all the

torsion tests the cyclic hysteresis loops show a small

bias in the negative loading direction. This asymmetry

in the stress strain behavior remained almost constant

throughout the test. It is possible that this may be

related to the starting conditions in a test (the data

is not clear). It has also been noticed that a small

amount of axial stress develops for the pure torsion

tests. The exact cause of this axial stress and

whether it has any relationship to the asymmetry in the

hysteresis loops cannot be conclusively determined from
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the existing data. A possible way of modeling the

asymmetric torsional behavior will be shown later in

this section.

Figures 7.1 and 7.2 show comparisons of the

predicted and experimental behavior in cyclic torsion

at g82°C at .02 M -1 and .002 M -1. The agreement

between the model and the test data is very good.

Recall that all the material parameters had been

determined from only the uniaxial tests. The cyclic

integration scheme outlined in Chapter 5 was used to

avoid cycle-by-cycle calculations. Notice the bias in

the test data; whereas, the model predicts symmetric

behavior.

The bias can be modeled in the back stress

evolution equation (5.25) by introducing an initial

value for the back stress, oij°; i.e.,

I 3f_ o .I

_i):f,_ij - Qm_2-_'_-_ax(Q ij-(_ij )Ce- R ij"
(7.7)

Since the bias in stress remains approximately constant

oij o may be taken as a constant tensor. Its value can

be determined for torsion cases using Equation 7.3

which may be rewritten as
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-1

('t-_12)=....ZZ . _In(------_) .
v'3"

(7.8)

Since c121 is found to be symmetric, the asymmetry in T

arises due to an asymmetry in _12. The value of aij o

can be found from the magnitude of the difference in

the values of _ at the positive and negative peak

points. For Rene" 80 at 982 %,

I_ 0 -2.5 -2i_ _

o ]
aij= 2.5 0 -2

2.5 -2.5

The model predictions using Equation 7.7 are shown in

Figure 7.3. Notice that both the hysteresis loops are

asymmetrical. This demonstrates that the proposed

model can be easily adapted to include asymmetric

behavior. However, implementation will be made only

after the exact causes of the asymmetric behavior are

understood.

Figures 7.4 and 7.5 show the results for pure

torsion analyses and tests at 871°C at strain rates of

.002 M -1 and .02 M -1 respectively. For a large number

of cycles (Figure 7.5b) the model predicts more

softening than is seen in the test data. Considering

the various factors involved in the analysis, such as

uniaxial test based material parameters, extrapolated

cyclic integrations, variable cyclic block strain
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ranges, etc, the results for all the torsion analyses

are remarkably good.

7.3 Proportional C_clic Loadin 9

The in phase tension/torsion loading condition,

shown in Figure 3.13a, is a proportional multiaxial

loading case since e12=Ce11 where C is a constant

throughout the test. This is different from the cases

considered so far because this

loading in two modes, tension

different constant strain rates.

involves simultaneous

and torsion, at two

These tests were also

performed in cyclic blocks with different strain

ranges. The response predicted by the model was

calculated as before but with independent control of

axial and shear strains.

Figures 7.6-7.8 show the comparisons of the model

predictions with experimental data for an in phase

tension/torsion cyclic test at g82=C at a shear strain

rate of .002 M -1. Both the axial response and shear

response are shown at three points in the cyclic

history. Clearly, there is very good agreement between

the response predicted by the model and the

experimental results. Notice the negative bias in the

experimental data. Part of this bias is due to a small

asymmetry in the strain control limits.
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Figures 7.9-7.11 show the results for a similar in

phase tension/torsion test at 871°C. In this case also

the model

experimental

experiment

predictions are in

results. Towards

(Figure 7.11) the

agreement with the

the end of the

model appears to

overpredict cyclic softening. However, most of the

discrepancies appear related to the negative bias of

the experimentally determined stress response. Based

on the results in this section, it is concluded that

the multiaxial modeling capability of the proposed

model for proportional loading histories is good.

7.4 Multiaxial Nonproportional Loadin 9 Cyclic Response

The proportional loading conditions discussed in

the previous section are encountered in certain high

temperature applications and represent an important

class of problems. However, the most general case of

multiaxial loading is nonproportional, which may

involve additional hardening or softening as discussed

previously. Two types of nonproportional loading

histories have been investigated to study the

capabilities of the proposed model: multiple in phase

tension/torsion loading and sinusoidal 90 degree out of

phase loading.
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7.4.1 Multiple In Phase Tension/Torsion Cyclic Loading

This test involves a series of in phase tension/

torsion cycles as shown in Figure 3.13b. Each segment

of the test, such as AA, is proportional Individually

and the planes of maximum shear strain remain fixed.

Host of the microscopic deformation related phenomena

are thus limited to only a few planes. After

stabilization in each segment the proportionality

factor between the axial and shear strains is changed,

such as path BB, and the maximum shear strain planes

are different for the new path. Thus, a sequence of

variable proportional loading paths can be used to

construct a nonproportional loading history. Such a

history has been shown to produce the additional

hardening phenomenon observed in other materials

[66,70].

Multiple in phase nonproportional loading history

tests have been performed on Rene" 80 at g82°C (Figure

3.13b), including pure shear (path CC) and pure axial

(path EE) cycles. In this test each path had a

different strain rate since the cyclic period was fixed

at 360 seconds throughout the entire test. The strain

ranges for the various paths are such that the

octahedral shear strain is approximately constant at

the peak points of each cycle.
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Figures 7.12-7.15 show the predicted and measured

cyclic response at the end of each segment of the

history. Figure 7.12, which shows the results of the

first and last segments of the test, summarizes the

objective of this test. The strain paths AA, the first

segment, and FF, the last segment, are identical.

However, the specimen is subjected to a nonproportional

loading history between these two segments. Figure

7.12a shows that the experimental stress strain

response in shear for the paths AA and FF are exactly

the same, indicating that there are no additional

effects due to nonproportional loading of Rene" 80 at

982°C. The model prediction is in good agreement with

the test data. The axial response experimental data

shows some scatter; however, paths AA and FF are close

to being pure torsion, and the axial stress and strain

measurements are subject to substantial error.

Figures 7.13 and 7.14 show the results for strain

paths BB and DD. There appears to be some scatter in

the measured response, which is probably related to the

biaxial extensometer. The asymmetry of the measured

hysteresis loops is again evident. Figure 7.15 shows

the response for segment CC, which is pure torsion, and

Figure 7.16 shows the response for the segment EE,

which is uniaxial.
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The results shown in Figures 7.12-7.16 are

encouraging for two reasons. First, Rene" 80 does not

appear to exhibit additional hardening or softening for

nonproportional loading at high temperatures. This has

been experimentally verified at 982°C (Figure 7.12) as

well as at 871ec. The second important consequence of

these results is that the multiaxial capability of the

model appears good for this material. The test

described in this section is perhaps the most

complicated one in this program, since it involves both

nonproportionality and variable strain rates.

7.4.2 Out of Phase Tension/Torsion Cyclic Loading

A typical nonproportional cyclic loading condition

that is used in tension/torsion experiments can be

represented by

¢ll=alsinmt (7.9)

and

c12=a2sln{_t-¢). (7.10)

Sinusoidal wave forms are used for the axial strain cll
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and shear strain c12 with amplitudes of aI and a2,

respectively, m is the frequency of the cycle, and ¢

is the phase angle between the axial and torsional

strains. When ¢=0 the loading is exactly in phase and

proportional, and when _=_/2 the loading is exactly out

of phase. A value of ¢ other than zero corresponds to

nonproportional loading. In the nonproportional

loading represented by Equations 7.9 and 7.10, the

principal strain directions and the maximum shear

strain directions continuously sweep through all the

material planes. Thus, hardening or softening is

distributed throughout all the material planes which

could result in additional hardening, as has been

reported for some materials [72,73]. The angle between

the inelastic strain rate vector and the deviatoric

stress vector also varies continuously, as shown in

Reference [72].

The response of Rene" BO at g82°C for go degree

(¢=_/2) out of phase sinusoidal tension/torsion strain

cycles has been analyzed using the new constitutive

model, and the results are shown in Figures 7.17 and

7.18. The axial and shear strain amplitudes in

Equations 7.9 and 7.10 were chosen such that the

octahedral shear strain remained constant throughout

the cycle. Note in Figure l.ll that the stress
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response tends to stabilize inside an ellipse. Recall

that Rene 80 cyclically softens at g82°C under high

strain rates. For cyclically hardening materials the

stress response tends to stabilize on the outside of an

e11ipse as shown in References [72,73].

It is significant to note that the proposed

constitutive model predicts a phase angle between the

inelastic strain rate vector and the deviatoric stress

vector. This is shown in Figure 7.18. This phase

e is calculated asangle, ,

O=COS "1
,1 iii51 • (7.11)

It is observed that e varies during a cycle. Its

response stabilizes after a transient period, as seen

B has beenin Figure 7.18. The phase angle, ,

experimentally measured for Hastelloy-X at room

temperature and is shown in Figure 7.19 [27]. The

variation of e shown in Figure 7.18 is in qualitative

agreement with the measured results for Hastelloy-X.

The axial and shear hysteresis loops for the 90

degree out of phase cyclic loading condition are shown

in Figure 7.20. Notice the cyclic softening that is

evident in these hysteresis loops. The general shapes
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of the axial and shear hysteresis

qualitative agreement with those

materials [731.

loops are in good

reported for other
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CHAPTER 8

DISCUSSION AND SUMMARY

The objective of this research program was to

develop a set of constitutive equations which can model

a wide variety of nonlinear material behavior phenomena

observed in high temperature superal]oys. The various

aspects of the material behavior and model development

were discussed in detail in the previous chapters.

This chapter briefly summarizes the key elements of the

constitutive model, its capabilities and limitations.

Suggestions are made to further extend the capabilities

of the model. Some aspects related to the

implementation of the model in finite element codes are

briefly discussed.

8.1 A Review of Important Results

Metallurgists have long recognized the existence

of internal stresses in inelastically deformed high

temperature metals. There is ample evidence of this in

some types of observed macroscopic behavior as well as

in microscopic observations of the associated

dislocation network. There is clear physical evidence

of a back stress which is directional in nature and

211



produces anelastic effects, Bauschinger effects,

negative stress relaxation and non-coaxiality of

inelastic strain rate and deviatoric stress vectors.

There are also a number of isotropic effects related to

dislocation behavior and strengthening mechanisms in a

solid. The proposed constitutive model is physically

based and incorporates both a back stress, _ij, and a

drag stress, Z.

The structure of the constitutive equations was

developed on the basis of observed material behavior

for Rene" BO at gB2°C. The experimental data base for

Rene" 80 is extensive and the problem of the material

parameter evaluation from experimental results has been

addressed and demonstrated at several temperatures.

Throughout the entire research, special emphasis has

been placed on modeling and verification of the cyclic

inelastic behavior of the materials that is encountered

in gas turbine engine components. The strain rate

sensitivity, creep and stress relaxation of Rene" 80

are predicted well at g82°C (Figures 5.6, 5.7, and

5.12). The cyclic softening and mean stress relaxation

behavior are also predicted well (Figures 5.B-5.11).

The model was then extended to 871°C, 760°C and

53B°C. The material displayed some strain rate sensi-

tivity at 871°C but none at the lower temperatures.
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The material parameters were evaluated at the various

temperatures and it was shown that the model can also

be used in the strain rate independent regime. The

capability of the model at other temperatures was

verified by predicting Rene" 80 behavior at 64g'c. It

was shown that in modeling creep behavior the recovery

formulation generally used in unified constitutive

models did not produce satisfactory results for Rene"

80. A new form of recovery based on the saturated

value for the back stress was shown to produce much

better results (Figures 6.21 and 6.22). The major

result of this phase of the research is that the

unified constitutive model can represent strain rate

dependent behavior at high temperatures and strain rate

independent behavior at low temperatures. The

monotonic tensile, creep and cyclic behavior of Rene"

80 predicted by the model compared very well with

experimental data at several temperatures.

In general, it is not sufficient to model only the

uniaxial material behavior. Loading conditions in real

world structures are usually multiaxia]. The new

constitutive model was developed in three-dimensional

form. The multiaxial capabilities of the model were

verified using a series of tension/torsion experiments.

Proportional and nonproportional conditions of
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multiaxial loading were explored and pure torsion

response was also analyzed. In all cases the

predictions of the model were in very good agreement

with the experimental response at the two temperatures

tested, 982°C and 871°C. These results, detailed in

Chapter 7, are very significant because all of the

material parameters in the constitutive model were

determined from uniaxial experiments. It was further

demonstrated that the model predicts the direction of

the inelastic strain rate vector, which is not

coincident with the deviatoric stress vector. The

cyclic variation of the phase angle between the two

vectors predicted by the model appears to have the

right trend. Cyclic softening and saturation under

biaxial conditions was also demonstrated (Figures 7.17

and 7.18). Thus, the multiaxial capabilities of the

new model appear to be very good.

8.2 Potential Extensions

There are a few aspects of the new constitutive

model which may be further improved upon, based on some

additional experiments. The current cyclic softening

modeling capability is reasonably good. The material

parameters related to cyclic softening or hardening can
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be determined more accurately if simpler cyclic tests

with constant strain range are used. Next, the stress

response in the torsion and multiaxial experiments is

not symmetric, even for symmetric strain control

conditions. The exact source of this asymmetric

behavior is not clear. It may be due to the large

grain size of Rene _ 80 in the thin wall test specimens.

The development of a small axial stress during pure

torsion testing may also be related to this result.

Additional experiments are necessary to establish the

exact cause of the asymmetric cyclic behavior. The

constitutive model predicts symmetric stress response

for symmetric strain control; however, a proposed way

to incorporate asymmetric cyclic behavior in

tension/torsion prediction was demonstrated (Figure

7.3). Incorporation of this method in the model is

delayed until the asymmetric behavior is fully

understood.

Another characteristic of the model which warrants

further investigation is the sensitivity during creep.

The steady state creep rate is very sensitive to the

value of the steady state back stress. This is more

evident at lower temperature creep. It appears that

the same characteristics of the model which enabled

strain rate independent behavior at low temperature
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give rise to the back stress sensitivity during steady

state creep. Methods to improve this should be

explored.

8.3 Modelin 9 Thermomechanical Response

The constitutive model was developed on the basis

of isothermal tests at 982°C, 871°C, 760°C and 538°C.

A form of temperature dependency was introduced through

the variations in the material parameters. The

predictions at each of these isothermal temperatures

are quite adequate; however, it is not clear that the

theory will accurately model the response in a thermal

cycle [1,74]. The model is isothermally based and does

not Include the thermal history effects and complex

thermomechanical interactions. There is only a

parametric dependence on temperature in the current

model. For accurate modeling of TMF behavior, perhaps

both temperature and temperature rate should be

included. It is expected that the drag stress equation

will be affected drastically, since cyclic hardening or

softening behavior is dependent on temperature. The

inelastic strain rate appears to depend on temperature

in the form of an Arrhenius relationship. This is

evident from the variation of the parameter D in the
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flow equation. Thus, it appears that the flow equation

may be written as

-H I 2 nl (Sij'ili j)ill=Doe l_exp-_'(_'_'2) j,R-_2
• (8.1)

where H is an activation energy for inelastic flow• K

is the Boltzmann constant, and D O is a constant.

Further investigation of such temperature dependencies

in the flow and evolution equations may be

advantageous. It is also necessary to study the

differences in the physical mechanisms of deformation

between isothermal and nonisothermal histories. For

example• it is known that in Rene" 80 the slip

deformation character is distinctly dependent upon

temperature [75]. At 650oC the deformation mode is

planar slip; whereas, at 982°C wavy slip is observed.

In a TMF cycle there will be complex interactions

between these deformation modes• and the resulting

nonisothermal material response may be different from

the isothermal response. The TMF model should be able

to model these transitions in microscopic mechanisms of

deformation.
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8.4 Finite Element Modelin 9

Structural analyses of almost all the critical gas

turbine engine components are performed today using

finite element models. The constitutive equations for

material behavior must, therefore, be implemented in

the FEM codes. This is being done as reported in [26]

and [30]. It will then be possible to analyze the

material response in complex geometries, such as

notches and holes.

The unified theories are, in general, a set of

coupled nonlinear differential equations which are

usually numerically stiff to integrate. These may

require the development of special numerical techniques

to make the solutions more efficient, as discussed by

several authors {76-79]. All the model predictions

made in this report were using a simple Euler forward

integration scheme. Automatic time step selection

schemes were incorporated but did not result in any

substantial gain in efficiency. The uniaxial and

tension/torsion analyses performed in this study are

much simpler than FEM analyses at a notch root using a

large number of elements. It has been suggested that

simple integration schemes such as the Euler method are

not suitable for analyzing nonproportional loading

{79]. This was found not to be true in this study.
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The numerical stiffness and the efficiency of

numerical integration of the unified theories appear to

be strongly dependent on the specific functional forms

and the material parameters. Table 8.1 contains the

computer processing time required for simple monotonic

tensile loading cases at three strain rates. Results

are shown for two unified models, the isotropic Bodner

model using only one state variable and the model

developed in Chapter 5 which has two state variables.

It was found that the new model uses less computer time

and that lower strain rate and lower temperature

analyses have less efficiency. Based on the earlier

attempts to model static thermal recovery it has become

clear that the efficiency of numerical integration

appears to be significantly dependent upon the nature

of the static thermal recovery terms. The preliminary

results shown in Table 5.1 appear to confirm this

observation.

The new model has been implemented in a two

dimensional finite element code. Solution times using

this code are comparable to those shown in Table 8.1;

however, the new model is found to require additional

storage space due to the presence of the back stress

tensor. The monotonic and cyclic predictions using the

FEM code are in agreement with the predictions made in
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this report. Further numerical work may

necessary to make the use of the new model

efficient in analyzing complicated geometries.

become

more

8.5 Extension of the Model to Other Materials

All the work in this report is based on the

experimentally observed behavior of Rene" 80, a typical

high temperature superalloy used for blades and vanes

in gas turbine engines. The model has been demonstrated

to work well for this material; however, the model

should be further tested by applying it to other

materials. There are considerable differences in the

microscopic and macroscopic behavior of the various

high temperature superalloys. The strain rate

sensitivity, temperature dependence and cyclic hardening

and softening behavior may be significantly different

from Rene" 80. In fact, there could be some materials

for which the inelastic strain rate vector and the

deviatoric stress vector may be codirectional, in which

case the flow equation (5.6) will be inapplicable.

Perhaps the most significant difference in the

behavior of materials is under nonproportional cyclic

loading conditions. It was seen that Rene" 80 did not

exhibit any additional hardening or softening for
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TABLE B. 1

Computer Processing Time * (seconds)

E (per minute)

Model Temp. __-2 _-02 .002

New 982°C 1.75 2.36 4.77

New 871°C 1.78 2.35 4.18

New 760°C 6.67 7.22 23.20
Bodner 982°C 2.94 2.92 10.48

* Monotonic tensile loading

221



nonproportional loads. This is not the general case.

Additional hardening may require some modifications in

the drag stress equation. It is also necessary to

develop some suitable measures of nonproportionality.

Some preliminary work has been done in this area, but a

full development is possible only after appropriate

experiments are performed on other materials.
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APPENDIX A

UNIAXIAL FORM OF SOME UNIFIED CONSTITUTIVE MODELS

The subroutines used for the detailed evaluation

of the various constitutive models reported in Chapter

2 used the general three dimensional form of the

models, as reported in the cited references. However,

for the purpose of evaluating the various material

parameters of the models from test data, it is useful

to reduce the general equations to uniaxial, isothermal

form. Such uniaxial forms are listed here for the five

theories examined in Chapter 2.

In these equations, the following notations are

used (uniaxial):

_I = Inelastic Strain Rate

o = Applied Stress

= Back Stress

Z = Drag Stress

R f I_II dt

1. Walker Model

•I Io-_In _c - Z

.n)RI
n2)_ I- nl¢ I)

F.

(_ - _Io- l(n3+ n_e )
L
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.._RI
Z =Zz- Z2e

The following constants were used for Hastelloy-X at

649°C:

Z 1 = 95631 PSI nl = 0 n5 = 0

Z2 = O* n2 = 1.5E7 PSI n6 = 0

n-1 = 0.079 n3 = 781 n7 = O*

m = 1.16 n4 = 0 no = -2000 PSI

• Z 2 = -60,000 PSI and n7 = 100 were used for checking

the cyclic softening capability.

2. Krieg, Swearengen and Rohde's Model

•I 1o nlc2¢ = Cz - Z .

2

•  leCS°o= C3_I- C,_ " ]-ET

" Zo)nz = c,l_zl- c,(z-

The following constants were used for Aluminum at 43=C:

C1 = 6.0 x 10 "13 l/sec C6 = 0

C2 = 6.05 C7 = 0

C3 = 424 MPa Zo = 0

C4 = 7,8016 x 10 -15 MPa -2 n = 1.0

C5 = 1.15875 x 10 -3 MPa "2
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3. Miller Model

OI • •

c = 6e Sinh

* = H,_ I HiBe inh (A lnl) n-

A2 s s n

O" = e-Q/kT for T>O.6Tm

T< 0.6Tin
l

The following constants were used for Hastelloy-X at

649oC:

Z o = 8000 psi

n = 1.598

B = 1.0293 E14 llsec

H 1 = 1.0E7 psi

A 1 = 9.305E-4 psi

H2 = 100

C2 = 50,000 psi

A 2 = 5.9425E-12 psi "3

Q = 104600 Cal./Mole

Tm = 1588"K

k = 1.9859
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4. Robinson Model

.I
E =_ (_-o-o)_,ooo,o_nO°I_°-_),o

or

F>O and o_<0

= 0 F<O
m

or F>O, o_>0 and o(-Lo-_) <0
3

2pH -I n-B-1- c - R I_ _ ; I_l>no

== .i Hooto- -Ino _ - R I-_ == ; In I<%
/-_ i-K I B on<O

The following constants were used for 2-1/4 Cr-Mo Steel

at 538 °C:

p = 3.61 x 107

n = 4

m= 7.73

8=1.5

R = 9.0 x 10 -3 ksi/h

H = 1.37 x 10 -4 ksi/h

_o = 0.14 ksi

K = 0.82 ksi

5. Bodner Model

_ o+_z)'1; 73_TOoeX.I_-(_
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•
z : m(z,-z)i_P-AZ,L--,z-F-j

The following

64goc:

DO -- 104 sec-1

n=3.2

Z 1 -- 319 ksi

Z o = 232 ksi

Z 2 = 319 ksi

constants were used for

A = 4 x 10 -4 sec-1

r= 1.5

E = 2.57 x 104 ksi

m = 2.758

Rene" 95 at
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